matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMehrheit, Zufallskette
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Mehrheit, Zufallskette
Mehrheit, Zufallskette < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrheit, Zufallskette: Ansatz
Status: (Frage) überfällig Status 
Datum: 17:29 Mi 29.01.2014
Autor: bubuhu

Hallo,

ich stehe vor dem Problem, Testergebnisse von automatisierten Tests auswerten zu müssen. Leider fehlt mir dafür ein Ansatz. Um mein Problem leichter zu beschreiben, versuche ich eine einfache "Aufgabenstellung" zu konstruieren:

In einer Urne befinden sich 100 rote, 30 grüne, 10 blaue und 5 schwarze Kugeln. Es soll 10 mal gezogen werden (mit Zurücklegen, ohne Berücksichtigung der Reihenfolge). Wie groß ist die Wahrscheinlichkeit, dass die roten Kugeln unter den gezogenen eine relative Mehrheit bilden.

Natürlich könnte man jetzt einen Baum aufzeichnen bzw. alles manuell lösen; in meinen tatsächlichen Testergebnissen gibt es aber mehr als 100 "Farben", was es nicht unbedingt einfach macht.

Mein Ansatz wäre die Berechnung einer Bernoulli Kette gewesen mit P(X>=6). Dabei wird aber z.B. folgendes Ergebnis nicht berücksichtigt, obwohl eine relative Mehrheit für rot vorliegt:
(rt, rt, rt, rt, ge, ge, ge, bl, bl, sw).

Bin für jeden Tipp dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mehrheit, Zufallskette: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Do 30.01.2014
Autor: Gonozal_IX

Hiho,

> Mein Ansatz wäre die Berechnung einer Bernoulli Kette gewesen mit P(X>=6). Dabei wird aber z.B. folgendes Ergebnis nicht berücksichtigt, obwohl eine relative Mehrheit für rot vorliegt:
>  (rt, rt, rt, rt, ge, ge, ge, bl, bl, sw).

Jop.

Seien [mm] $X_r,X_g,X_b,X_s$ [/mm] die Anzahl an Kugeln der jeweiligen Farbe.

Dann sind diese binomialverteilt mit Parametern [mm] $p_r,p_g,p_b,p_s$. [/mm]

Du suchst nun:

[mm] $P\left(X_r > \max(X_g,X_b,X_s)\right)$ [/mm]

Allerdings seh ich bisher auch keinen schönen Weg, das auszurechnen, da deine ZV nicht unabhängig sind.

edit: Vielleicht ist das zielführend:

[mm] $P\left(X_r > \max(X_g,X_b,X_s)\right) [/mm] = [mm] P\left(2X_r > X_g + \max(X_b,X_s) + |X_g - \max(X_b,X_s)|\right) [/mm] = [mm] P\left(4X_r > 2X_g + X_b + X_s + |X_b - X_s| + 2|X_g - \max(X_b,X_s)|\right)$ [/mm]

Nun gilt: [mm] $X_g [/mm] + [mm] X_b [/mm] + [mm] X_s [/mm] = 10 - [mm] X_r$ [/mm]

[mm] $=P\left(5X_r > 10 + X_g + |X_b - X_s| + |2X_g - X_b - X_s - |X_b - X_s||\right)$ [/mm]

[mm] $=P\left(5X_r > 10 + X_g + X_b - X_s + |2X_g - 2X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(5X_r > 10 + X_g + X_s - X_b + |2X_g - 2X_s |, X_s > X_b\right)$ [/mm]

Nun gilt: $10 + [mm] X_g [/mm] + [mm] X_b [/mm] - [mm] X_s [/mm] = 10 - [mm] X_s [/mm] - [mm] X_g [/mm] - [mm] X_b [/mm] + [mm] 2X_g [/mm] + [mm] 2X_b [/mm] = [mm] X_r [/mm] + 2 [mm] X_g [/mm] + 2 [mm] X_b$ [/mm] und damit:

[mm] $=P\left(4X_r > 2X_g + 2X_b + |2X_g - 2X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(4X_r > 2X_g - 2X_s + |2X_g - 2X_s |, X_s > X_b\right)$ [/mm]

[mm] $=P\left(2X_r > X_g + X_b + |X_g - X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(2X_r > X_g - X_s + |X_g - X_s |, X_s > X_b\right)$ [/mm]

[mm] $=P\left(X_r > \max(X_g,X_b), X_b \ge X_s\right) [/mm] + [mm] P\left(X_r > \max(X_g,X_s), X_s > X_b\right)$ [/mm]

Ist aber wohl nicht zielführend, da es offensichtlich das gleiche ist wie oben.... *hmpf*

Gruß,
Gono.

Bezug
        
Bezug
Mehrheit, Zufallskette: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 13.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]