matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMehrfachintegrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrfachintegrale
Mehrfachintegrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegrale: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 21.01.2010
Autor: DasDogma

Aufgabe
1) Berechnen Sie
[mm]\integral_{B}^{}{x_{1}^2 x_{2} dx}[/mm]
wobei B der Halbkreis [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\}[/mm] ist.

Hallo, habe diese Frage bisher noch nirgendwo gestellt.

Also wie ich der Aufgabenstellung entnehmen kann, befindet sich der Halbkreis im ersten und im vierten Quadranten. Dabei schneidet er die [mm]x_{2}[/mm]-Achse in 2 und -2. Weiterhin werde ich das ganze in Polarkoordinaten transformieren und damit weiterrechnen.
Daraus müsste sich dann meiner Auffassung nach folgendes Integral ergeben:
[mm]\integral_{B}^{}{r*r^2cos^2\varphi*rsin \varphi d(r,\varphi)} = \integral_{0}^{2}{\integral_{-\pi/2}^{\pi/2}{r*r^2cos^2\varphi*rsin \varphi d\varphi} dr}[/mm]

Also das wäre mein Lösungsansatz. Daher meine Frage, kann ich hier wie gehabt weiter machen oder ist hier ein Fehler versteckt.
Ich hoffe Ihr könnt mir helfen.

Gruß
DasDogma

        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Do 21.01.2010
Autor: fred97


> 1) Berechnen Sie
>  [mm]\integral_{B}^{}{x_{1}^2 x_{2} dx}[/mm]
>  wobei B der Halbkreis
> [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\}[/mm] ist.
>  Hallo, habe diese Frage bisher noch nirgendwo gestellt.
>  
> Also wie ich der Aufgabenstellung entnehmen kann, befindet
> sich der Halbkreis im ersten und im vierten Quadranten.
> Dabei schneidet er die [mm]x_{2}[/mm]-Achse in 2 und -2. Weiterhin
> werde ich das ganze in Polarkoordinaten transformieren und
> damit weiterrechnen.
>  Daraus müsste sich dann meiner Auffassung nach folgendes
> Integral ergeben:
>  [mm]\integral_{B}^{}{r*r^2cos^2\varphi*rsin \varphi d(r,\varphi)} = \integral_{0}^{2}{\integral_{-\pi/2}^{\pi/2}{r*r^2cos^2\varphi*rsin \varphi d\varphi} dr}[/mm]



Es ist doch B der Halbkreis $ [mm] K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 1\} [/mm] $, also ist [mm] x_1 \ge [/mm] 1. Damit sind Deine Grenzen falsch !

FRED


>  
> Also das wäre mein Lösungsansatz. Daher meine Frage, kann
> ich hier wie gehabt weiter machen oder ist hier ein Fehler
> versteckt.
>  Ich hoffe Ihr könnt mir helfen.
>  
> Gruß
>  DasDogma


Bezug
                
Bezug
Mehrfachintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 23.01.2010
Autor: DasDogma

Hallo, danke für die schnelle Antwort. Mir ist nun aber ein Fehler in der Aufgabenstellung aufgefallen und zwar lautet sie [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 0\} [/mm] also [mm] x_{1} \ge 0[/mm].

Stimmen für diesen Fall dann die Integrale?

Gruß,
DasDogma

Bezug
                        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 23.01.2010
Autor: MathePower

Hallo DasDogma,

> Hallo, danke für die schnelle Antwort. Mir ist nun aber
> ein Fehler in der Aufgabenstellung aufgefallen und zwar
> lautet sie [mm]K_{2}(0,0) \cap \{(x_{1},x_{2})\in\IR | x_{1}\ge 0\}[/mm]
> also [mm]x_{1} \ge 0[/mm].
>  
> Stimmen für diesen Fall dann die Integrale?


Ja.


>  
> Gruß,
>  DasDogma


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]