matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitMehrdimensionale Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Mehrdimensionale Stetigkeit
Mehrdimensionale Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale Stetigkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 20.11.2019
Autor: bondi

Aufgabe
Ist die Funktion $ f: [mm] \IR^2 \rightarrow \IR [/mm] $ stetig in (0,0) bzw. stetig?

a) $ [mm] f(n)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $

Hinweis zu a) Betrachte die Folge $ [mm] \left( \bruch{1}{n}, 0 \right), [/mm] n [mm] \in \IN [/mm] $

Hallo,
kurz was Technisches. Letztes WE war Euer Server nicht erreichbar. Seitdem er wieder da ist, gibt es mit den $-Zeichen, sprich den LaTeX-Wrappern Probleme. Mal werden sie fehlerfrei gelesen. Ein ander Mal nicht (s. posting).

Zum Eigentlichen:

Wir haben die Aufgabe neulich schon einmal besprochen. Der Verlauf ist also klar. Nun aber gab der Prof die Aufgabe noch einmal mit dem darunter aufgeführten Hinweis aus. Die letzte Klausur hat mich an einigen Stellen wichtige Formpunkte gekostet.
Ich verstehe den Hinweis als Hinweis. Würde also ungeachtet dessen meinen Weg gehen.

Teilt ihr meine Meinung?

Viele Grüße,
bondi



        
Bezug
Mehrdimensionale Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Do 21.11.2019
Autor: fred97


> Ist die Funktion [mm]f: \IR^2 \rightarrow \IR[/mm] stetig in (0,0)
> bzw. stetig?
>  
> a) [mm]f(n)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases}[/mm]


Das soll wohl so lauten:

[mm]f(x,y)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases}[/mm]


>  
> Hinweis zu a) Betrachte die Folge [mm]\left( \bruch{1}{n}, 0 \right), n \in \IN[/mm]
>  
> Hallo,
>  kurz was Technisches. Letztes WE war Euer Server nicht
> erreichbar. Seitdem er wieder da ist, gibt es mit den
> $-Zeichen, sprich den LaTeX-Wrappern Probleme. Mal werden
> sie fehlerfrei gelesen. Ein ander Mal nicht (s. posting).
>  
> Zum Eigentlichen:
>
> Wir haben die Aufgabe neulich schon einmal besprochen.


Damals hatten wir allerdings:



$ [mm] f(x,y)=\begin{cases} \bruch{x^2-y^2}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $

> Der Verlauf ist also klar. Nun aber gab der Prof die
> Aufgabe noch einmal mit dem darunter aufgeführten Hinweis
> aus. Die letzte Klausur hat mich an einigen Stellen
> wichtige Formpunkte gekostet.
>  Ich verstehe den Hinweis als Hinweis.


Ja, ein Hinweis ist als Hinweis zu verstehe, was sonst ?

> Würde also
> ungeachtet dessen meinen Weg gehen.

Welchen Weg ? Früher und auch jetzt hast Du diese Aufgabe nicht bearbeitet.

Welche Aufgabe ist es nun, die mit den Quadraten oder die ohne Quadrate ?


Egal, bei beiden kommst Du mit dem Hinweis ratz-fatz ans Ziel:

Ist

$ [mm] f(x,y)=\begin{cases} \bruch{x^2-y^2}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $,

so haben wir [mm] $f(\frac{1}{n},0)=1 \to [/mm] 1 [mm] \ne [/mm] 0 =f(0,0)$ für $n [mm] \to \infty.$ [/mm]

$f$ ist also in (0,0) nicht stetig.

Ist hingegen

$ [mm] f(x,y)=\begin{cases} \bruch{x-y}{x^2+y^2}, & \mbox{ } falls \mbox{ } (x,y) \neq (0,0) \\ 0, & \mbox{ } falls \mbox{} (x,y) = (0,0) \end{cases} [/mm] $,

so haben wir [mm] $f(\frac{1}{n},0)= [/mm] n [mm] \to \infty$ [/mm] für $n [mm] \to \infty.$ [/mm]

$f$ ist also in (0,0) nicht stetig.

>  
> Teilt ihr meine Meinung?
>  
> Viele Grüße,
>  bondi
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]