matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitMaximum und Nullstelle stetig
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Maximum und Nullstelle stetig
Maximum und Nullstelle stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum und Nullstelle stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Mo 25.06.2012
Autor: Surt

Aufgabe 1
Seien [mm] \alpha,\beta \in \IR [/mm] mit [mm] \alpha [/mm] < [mm] \beta. [/mm] Zeige, dass es ein [mm] x\in(\alpha,\beta) [/mm] gibt mit

[mm] \frac{x^{2}+1}{x-\alpha} [/mm] + [mm] \frac{x^{6}+1}{x-\beta}=0 [/mm]

Aufgabe 2
Es sei f: [mm] \IR \rightarrow \IR [/mm] eine stetige Funktion, welche

[mm] \lim_{x\to\pm\infty} [/mm] f(x) = 0

erfüllt. Zeige, dass es ein z [mm] \in \IR [/mm] gibt, so dass für alle [mm] x\in \IR [/mm] die Abschätzung

[mm] \abs{f(x)} \le \abs{f(z)} [/mm]

gilt.

Hallo,
Ich habe ein paar Fragen zu diesen 2 Aufgaben.

Zu Aufgabe 1 habe ich mir folgendes überlegt:

Die Funktion muss stetig sein, weil Summe, Differenz, Produkt und Quotient stetiger Funktionen wieder stetig ist und [mm] x^{2}+1, x^{6}+1, x-\alpha [/mm] und [mm] x-\beta [/mm] alle stetig sind.
Wenn ich jetzt in Intervall [mm] (\alpha,\beta) [/mm] die Grenzwerte betrachte, sehe ich, dass [mm] \lim_{x\to\alpha} [/mm] = [mm] \infty [/mm] und [mm] \lim_{x\to\beta}=-\infty. [/mm]
Aus dem Zwischenwertsatz und der Stetigkeit von f folgt jetzt direkt, dass es ein x mit der geforderten Eigenschaft geben muss. Kann man das so zeigen?

Meine Überlegungen zu Aufgabe 2:
f ist auf ganz [mm] \IR [/mm] stetig. Das heißt insbesondere, dass f keine Definitionslücken, also auch keine Polstellen besitzt. Weil die Grenzwerte im unendlichen 0 werden muss es also einen größten/kleinsten Funktionswert geben.
Das ist leider nur eine grobe Argumentation. Wie kann ich das mathematisch Ausdrücken?

Viele Grüße
Surt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Maximum und Nullstelle stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mo 25.06.2012
Autor: fred97


> Seien [mm]\alpha,\beta \in \IR[/mm] mit [mm]\alpha[/mm] < [mm]\beta.[/mm] Zeige, dass
> es ein [mm]x\in(\alpha,\beta)[/mm] gibt mit
>  
> [mm]\frac{x^{2}+1}{x-\alpha}[/mm] + [mm]\frac{x^{6}+1}{x-\beta}=0[/mm]
>  Es sei f: [mm]\IR \rightarrow \IR[/mm] eine stetige Funktion,
> welche
>  
> [mm]\lim_{x\to\pm\infty}[/mm] f(x) = 0
>  
> erfüllt. Zeige, dass es ein z [mm]\in \IR[/mm] gibt, so dass für
> alle [mm]x\in \IR[/mm] die Abschätzung
>
> [mm]\abs{f(x)} \le \abs{f(z)}[/mm]
>  
> gilt.
>  Hallo,
>  Ich habe ein paar Fragen zu diesen 2 Aufgaben.
>  
> Zu Aufgabe 1 habe ich mir folgendes überlegt:
>  
> Die Funktion muss stetig sein, weil Summe, Differenz,
> Produkt und Quotient stetiger Funktionen wieder stetig ist
> und [mm]x^{2}+1, x^{6}+1, x-\alpha[/mm] und [mm]x-\beta[/mm] alle stetig
> sind.
>  Wenn ich jetzt in Intervall [mm](\alpha,\beta)[/mm] die Grenzwerte
> betrachte, sehe ich, dass [mm]\lim_{x\to\alpha}[/mm] = [mm]\infty[/mm] und
> [mm]\lim_{x\to\beta}=-\infty.[/mm]
> Aus dem Zwischenwertsatz und der Stetigkeit von f folgt
> jetzt direkt, dass es ein x mit der geforderten Eigenschaft
> geben muss. Kann man das so zeigen?

Ja


>  
> Meine Überlegungen zu Aufgabe 2:
>  f ist auf ganz [mm]\IR[/mm] stetig. Das heißt insbesondere, dass f
> keine Definitionslücken, also auch keine Polstellen
> besitzt. Weil die Grenzwerte im unendlichen 0 werden muss
> es also einen größten/kleinsten Funktionswert geben.
>  Das ist leider nur eine grobe Argumentation. Wie kann ich
> das mathematisch Ausdrücken?

Tipps:

1. Wegen $ [mm] \lim_{x\to\pm\infty} [/mm] $ f(x) = 0 gibt es ein c>0 mit:

                      |f(x)| [mm] \le [/mm] 1 für |x|>c

2. Es gibt ein [mm] x_0 \in [/mm] [-c,c] mit: f(x) [mm] \le f(x_0) [/mm] für alle  x [mm] \in [/mm] [-c,c]

FRED




>  
> Viele Grüße
>  Surt
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]