matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMaximum Minimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Maximum Minimum
Maximum Minimum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Minimum: Frage
Status: (Frage) beantwortet Status 
Datum: 09:44 Mi 01.06.2005
Autor: mavis

Hallo!
ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.Ich kann leider mit dieser Aufgabe nichts anfangen. die aufgabe lautet: Sie f: R n -> R eine stetig differenzierbare Funktion und v aus R n ein Punkt, so dass f in v ein lokales Maximum oder Minimum besitzt. Zeigen Sie, dass dann f ' (v) = 0 gilt. wie habe ich das zu zeigen? Ich bin über jede Hilfe dankbar
Liebe Grüsse

        
Bezug
Maximum Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Mi 01.06.2005
Autor: Julius

Hallo!

Du musst zeigen, dass der Gradient von $f$ an der Stelle $v$ verschwindet, wenn die Funktion in $v$ ein lokales Maximum oder Minimum besitzt.

Dazu betrachtets du für alle [mm] $i=1,\ldots, [/mm] n$ die Funktion

[mm] $\gamma_i [/mm] : [mm] \begin{array}{ccl} \IR & \to & \IR \\[5pt] t & \mapsto & f((v_1,\ldots,v_{i-1},v_i+t,v_{i+1},\ldots,v_n)) \end{array}$ [/mm]  .

Dann hat [mm] $\gamma_i$ [/mm] an der Stelle $t=0$ ein lokales Maximum/Minimum (warum?) und es gilt:

[mm] $\gamma_i'(0) [/mm] = [mm] \frac{\partial f}{\partial x_i}(v_1,\ldots,v_n)$. [/mm]

Viele Grüße
Julius

Bezug
                
Bezug
Maximum Minimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Do 02.06.2005
Autor: mavis

Danke dir, hast mir wirklich weitergeholfen.
liebe grüsse
mavis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]