matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMaximum Likehood-Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Maximum Likehood-Schätzer
Maximum Likehood-Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Likehood-Schätzer: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 10.02.2009
Autor: itstudent

Aufgabe
Bei einem Züchtungsexperiment treten die drei Genotypen DD, Dd bzw. dd mit den Wahrscheinlichkeit [mm] p^2, [/mm] 2p(1-p) bzw. [mm] (1-p)^2 [/mm] für ein P [mm] \in [/mm] 0,1 auf. Bei n unnabhängigen Durchführungen diese Experiments traten diese Genotypen n1, n2 bzw. n3 mal auf (n1+n2+n3=n). Bestimmen Sie eine Maximum-Likehood-Schätzung für den Parameter p.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich möchte die Likehood-Funktion bestimmen und dann die Extemstellen finden. Diese stellen sind dann Maximum-Likehood-Schätzer.

Leider weiss ich nicht, wie ich die Likehood-Funktion bestimme. Könntet ihr mir bitte helfef?

        
Bezug
Maximum Likehood-Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Di 10.02.2009
Autor: Blech


> Bei einem Züchtungsexperiment treten die drei Genotypen DD,
> Dd bzw. dd mit den Wahrscheinlichkeit [mm]p^2,[/mm] 2p(1-p) bzw.
> [mm](1-p)^2[/mm] für ein P [mm]\in[/mm] 0,1 auf. Bei n unnabhängigen
> Durchführungen diese Experiments traten diese Genotypen n1,
> n2 bzw. n3 mal auf (n1+n2+n3=n). Bestimmen Sie eine
> Maximum-Likehood-Schätzung für den Parameter p.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich möchte die Likehood-Funktion bestimmen und dann die
> Extemstellen finden. Diese stellen sind dann
> Maximum-Likehood-Schätzer.
>  
> Leider weiss ich nicht, wie ich die Likehood-Funktion
> bestimme. Könntet ihr mir bitte helfef?

Die Likelihood sind nur Dichte [mm] $f_p(x)$ [/mm] bzw. hier Zähldichte [mm] $\varrho_p(x)$. [/mm] Nur sind Variable und Parameter "vertauscht". D.h. man sieht [mm] $\varrho_p(x)$ [/mm] als Funktion von p mit Parameter x an:

$L(p\ |\ [mm] \text{die Daten}) [/mm] = [mm] P(\text{ die Daten treten auf }|\ [/mm] p)$

Du mußt also bestimmen, wie hoch bei einem Multinomialexperiment mit den obigen Wahrscheinlichkeiten für die Einzelereignisse die Zähldichte an der Stelle [mm] $(n_1,n_2,n_3)$ [/mm] ist. Das ist dann Deine Likelihoodfunktion.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]