matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMaximum Lik.hood Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Maximum Lik.hood Schätzer
Maximum Lik.hood Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Lik.hood Schätzer: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 28.01.2015
Autor: AragornII

Aufgabe
$ [mm] \pi_\lambda [/mm] $ bezeichne die Poisson-Verteilung mit Zähldichte

$ [mm] \pi_\lambda [/mm] $ [mm] (\left\{ k \right\}) [/mm] = $ [mm] exp(-\lambda)\bruch{\lambda^k}{k!} [/mm] $, k [mm] \in [/mm] $ [mm] \IN_0 [/mm] $.

Bestimmen Sie den Maximum-Likelihood-Schätzer für $ [mm] \lambda [/mm] > 0 $bei gegebener Stichprobe $ x = [mm] (x_1,....,x_m) [/mm] $ [mm] \in $\IN^m_0$ [/mm]

Hallo,

habe mal eine Frage zu dieser Aufgabe..

hier ist meine Lösung:

1.Likelihood Funktion aufstellen:

$ [mm] L(\lambda) [/mm] = [mm] \prod_{i=1}^{m} [/mm] $ [mm] \pi_\lambda [/mm] $ [mm] \left\{ x_i \right\} [/mm] $ =  $ [mm] \prod_{i=1}^{n} e^{-\lambda} [/mm] * [mm] \bruch{\lambda^{x_i}}{x_i!} [/mm] $

2. log-likelihood-Gleichung aufstellen:

$ [mm] log(e^{-\lambda} [/mm] * [mm] \bruch{\lambda^{x_i}}{x_i!}) [/mm] = [mm] log(\bruch{e^{-\lambda} *\lambda^{x_i}}{x_i!}) [/mm] $ = $ [mm] \sum_{i=1}^{m} log(e^{-\lambda} *\lambda^{x_i})-log(x_i!) [/mm] $= $ [mm] \sum_{i=1}^{m} log(e^{-\lambda})+log(\lambda^{x_i})-log(x_i!) [/mm] $ = $ [mm] \sum_{i=1}^{m} -\lambda+x_ilog(\lambda)-log(x_i!) [/mm] $

3. Liklihood Gleichung aufstellen:

[mm] \bruch{d}{d\lambda} l(\lambda) [/mm] = $ [mm] -1+\bruch{x_i}{\lambda} [/mm] $ = $ [mm] \sum_{i=1}^{m} (-1+\bruch{x_i}{\lambda}) [/mm] = 0 $

ist das richtig? bin ich schon fertig mit der Aufgabe?



LG

        
Bezug
Maximum Lik.hood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mi 28.01.2015
Autor: luis52


> 1.Likelihood Funktion aufstellen:
>  
> [mm]L(\lambda) = \prod_{i=1}^{m}[/mm] [mm]\pi_\lambda[/mm]  [mm]\left\{ x_i \right\}[/mm]
> =  [mm]\prod_{i=1}^{n} e^{-\lambda} * \bruch{\lambda^{x_i}}{x_i!}[/mm]

Moin, besser:

[mm]\prod_{i=1}^{\red{m}} e^{-\lambda} * \bruch{\lambda^{x_i}}{x_i!}[/mm]



>
> 2. log-likelihood-Gleichung aufstellen:
>  
> [mm]log(e^{-\lambda} * \bruch{\lambda^{x_i}}{x_i!}) = log(\bruch{e^{-\lambda} *\lambda^{x_i}}{x_i!})[/mm]
> = [mm]\sum_{i=1}^{m} log(e^{-\lambda} *\lambda^{x_i})-log(x_i!) [/mm]=
> [mm]\sum_{i=1}^{m} log(e^{-\lambda})+log(\lambda^{x_i})-log(x_i!)[/mm]
> = [mm]\sum_{i=1}^{m} -\lambda+x_ilog(\lambda)-log(x_i!)[/mm]
>  
> 3. Liklihood Gleichung aufstellen:
>  
> [mm]\bruch{d}{d\lambda} l(\lambda)[/mm] = [mm]-1+\bruch{x_i}{\lambda}[/mm] =
> [mm]\sum_{i=1}^{m} (-1+\bruch{x_i}{\lambda}) = 0[/mm]
>  
> ist das richtig?

Ja.

>bin ich schon fertig mit der Aufgabe?

Nein. Wo ist der Schaetzer?


Bezug
                
Bezug
Maximum Lik.hood Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 29.01.2015
Autor: AragornII

Hallo, danke für deine Antwort Luis52.

ja das frage ich mich gerade auch ^^ hab es zwar gegooglet aber irgendwie komme ich da nicht voran..
könntest du mir kurz helfen?

LG

Bezug
                        
Bezug
Maximum Lik.hood Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Do 29.01.2015
Autor: luis52


> Hallo, danke für deine Antwort Luis52.

Gerne.

>  
> ja das frage ich mich gerade auch ^^ hab es zwar gegooglet
> aber irgendwie komme ich da nicht voran..
>  könntest du mir kurz helfen?


Loese  $ [mm] \sum_{i=1}^{m} (-1+\bruch{x_i}{\lambda}) [/mm] = 0 $   nach [mm] $\lambda$ [/mm] auf. Bedenke: Du suchst die Stelle, an der die Log-Likelihoodfunktion ein Maximum annimmt. Vielleicht kannst du dir sogar noch den Luxus leisten, die hinreichende Bedingung zu ueberpruefen ...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]