matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMaximum-Likelihood
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Maximum-Likelihood
Maximum-Likelihood < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:01 Sa 01.07.2017
Autor: mimo1

Aufgabe
Sei [mm] \theta \in \IZ [/mm] eine ganze Zahl und X eine Zufallsvariable mit Verteilungsfunktion

[mm] F(x):=\begin{cases} 0, & \mbox{falls } x\le \theta \mbox{} \\ x-\theta, & \mbox{falls } x\in (\theta,\theta+1) \mbox{ }\\ 1, & \mbox{sonst} \end{cases} [/mm]

Zu einer Beobachtung [mm] x\in \IR\setminus \IZ [/mm] bestimme man den Maximum-Likelihood-Schätzwert [mm] \hat{\theta} [/mm] für [mm] \theta. [/mm]

Ist der zugehörige Schätzer erwartungstreu für [mm] \theta? [/mm]

Hallo zusammen,

ich habe erstmal folgendes gemacht:

[mm] L(x_1,...,x_n|\theta)=\summe_{i=1}^{n}x_i-\theta=-\n\theta-\summe_{i=1}^{n}x_i [/mm]

Dann log angewendet: [mm] logL=log(-n\theta)+log(\summe_{i=1}^{n}x_i [/mm]
dann ist L'= [mm] -\bruch{1}{n\theta}+\bruch{1}{\summe_{i=1}^{n}x_i}\overset{!}{=}0 [/mm]

dann habe ich es nach [mm] \theta [/mm] umgeformt und erhalte dann:

[mm] \hat{\theta}=\bruch{\summe_{i=1}^{n}x_i}{n} [/mm] ML-Schätzer.

Zu erwartungstreu:

z.z. [mm] E(\hat{\theta})=\theta [/mm]

Dann ist [mm] E(\theta)=E(\bruch{\summe_{i=1}^{n}x_i}{n})\overset{E linear}{=}\bruch{1}{n}\summe_{i=1}^{n}E(x_i)=\bruch{1}{n}*n*\theta=\theta [/mm]

[mm] \Rightarrow \hat{\theta} [/mm] erwartungstreu für [mm] \theta [/mm]

Stimmt das, was ich gemacht habe?
Vielen Dank im Voraus.

        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Sa 01.07.2017
Autor: luis52


> Stimmt das, was ich gemacht habe?


Moin, leider nicht. Ich lese, dass *eine* Beobachtung $ [mm] x\in \IR\setminus \IZ [/mm] $ vorliegt, nicht [mm] $n=2,3,\ldots$ [/mm] Z.B. $x=5.3$. wie sieht dann die Likelihoodfunktion aus?

Bezug
                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Sa 01.07.2017
Autor: mimo1

würde dann die Likelihodd.Fkt. folgend ausschauen:

[mm] L(x_1=5,3|\theta)=5,3- \theta [/mm]  bzw [mm] L(x_1,...,x_n|\theta)=\produkt_{i=1}^n(x_i-\theta)? [/mm]

Ich stehe gerade total auf dem Schlauch. Könntest du mir da bitte weiterhelfen?

Bezug
                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Sa 01.07.2017
Autor: luis52

> Könntest du mir  da bitte weiterhelfen?

Klar. Die Dichte ist


$ [mm] f_\theta(x):=\begin{cases} 1, & \mbox{falls } x\in (\theta,\theta+1) \mbox{ }\\ 0, & \mbox{sonst} \end{cases} [/mm] $

so dass die Likelihoodfunktion fuer eine Stichprobe [mm] $x_1,\dots x_n$ [/mm] gegeben ist durch

[mm] $L(\theta)=\prod_{i=1}^nf_\theta(x_i)$. [/mm]

Im Beispiel oben ist dann $n=1$ und [mm] $L(\theta)=f_\theta(5.3)$. [/mm] Nun lass das [mm] $\theta$ [/mm] von [mm] $\theta\approx0$ [/mm] langsam groesser werden ...



Bezug
                                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 So 02.07.2017
Autor: mimo1

nochmals vielen Dank für deinen Hinweis.

Für n=1 wäre dann z.B. für  [mm] x_1=5,3 [/mm]

[mm] L(\theta)=f_{\theta}(x_1)=\begin{cases} 1, & \mbox{falls } \theta\ge 5 \mbox{ } \\ 0, & \mbox{sonst} \mbox{} \end{cases} [/mm]

Habe ich es soweit verstanden?

Bezug
                                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Mo 03.07.2017
Autor: luis52


> nochmals vielen Dank für deinen Hinweis.
>
> Für n=1 wäre dann z.B. für  [mm]x_1=5,3[/mm]
>
> [mm]L(\theta)=f_{\theta}(x_1)=\begin{cases} 1, & \mbox{falls } \theta\ge 5 \mbox{ } \\ 0, & \mbox{sonst} \mbox{} \end{cases}[/mm]
>  
> Habe ich es soweit verstanden?

*Ich* erhalte [mm] $f_{\theta}(x_1)=f_{\theta}(5.3)=1\iff\theta<5.3<\theta+1\iff4.3<\theta<5.3$. [/mm] Allgemein:

[mm]L(\theta)=f_{\theta}(x_1)=\begin{cases} 1, & \mbox{falls } x_1-1<\theta\le x_1 \mbox{ } \\ 0, & \mbox{sonst} \mbox{} \end{cases}[/mm]


Bezug
                                                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Di 04.07.2017
Autor: mimo1

Wäre dann der ML-Schätzer folgend:

[mm] \hat{\theta}=(x_1-1,x_1) [/mm]

Kann man das so schreiben?

Bezug
                                                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Di 04.07.2017
Autor: luis52


> Wäre dann der ML-Schätzer folgend:
>  
> [mm]\hat{\theta}=(x_1-1,x_1)[/mm]
>
> Kann man das so schreiben?

Nein, der ML-Schaetzer ist hier nicht eindeutig festgelegt. Jeder Wert aus dem Intervall ist geeignet.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]