matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMaximierungsproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Maximierungsproblem
Maximierungsproblem < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximierungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 So 09.03.2008
Autor: gandhito

Hallo

Es geht hier um Spieltheorie, genauer um das Prinzipal-Agenten Spiel. Ist aber nicht so wichtig.

Wie maximiere ich den Nutzen eines Agenten der folgende Nutzenfunktion hat?

U=120-x - [mm] \alpha [/mm] max(2x-(120-x),0) - [mm] \beta [/mm] max((120-x)-2x,0), x muss zwischen 10 und 120 liegen.

Ableiten kann ich ka nicht, da alle x verschwinden. Wie find ich das x welches die Funktion (Nutzen) maximiert?

        
Bezug
Maximierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 So 09.03.2008
Autor: MathePower

Hallo gandhito,

> Hallo
>  
> Es geht hier um Spieltheorie, genauer um das
> Prinzipal-Agenten Spiel. Ist aber nicht so wichtig.
>  
> Wie maximiere ich den Nutzen eines Agenten der folgende
> Nutzenfunktion hat?
>  
> U=120-x - [mm]\alpha[/mm] max(2x-(120-x),0) - [mm]\beta[/mm]
> max((120-x)-2x,0), x muss zwischen 10 und 120 liegen.
>  
> Ableiten kann ich ka nicht, da alle x verschwinden. Wie
> find ich das x welches die Funktion (Nutzen) maximiert?

Ist U hier nicht [mm]U=U\left(\alpha, \beta \right)[/mm]?

Maximiert wird U,wenn so wenig wie möglich abgezogen wird.

Gruß
MathePower


Bezug
                
Bezug
Maximierungsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 So 09.03.2008
Autor: gandhito

Es ist nicht U= [mm] U(\alpha,\beta) [/mm]

U=120-x - [mm] \alpha [/mm] max(2x-(120-x),0) -  [mm] \beta [/mm]  max((120-x)-2x,0)

Dies ist die Nutzenfunktion im Fehr/Schmidt Modell. Ein Spieler (A) hat die Auswahl einen Betrag x zwischen 10 und 120 zu wählen. Er erhält 120 - x und der andere Spieler (B) erhält 2 x. Spieler A würde 10 wählen da die Auszahlung am höchsten ist 120 - 10.
Spieler 1 möchte seinen Nutzen maximieren. In der Nutzenfunktion sind die Parameter [mm] \alpha [/mm] und [mm] \beta [/mm] Faktoren für die Ungleichheitsaversion. Er mag es nicht wenn er viel mehr als der andere Spieler erhält und umgekehrt mag er es nicht wenn der andere viel mehr erhält. Desahlb muss man die Nutzenfunktion maximieren und man sollte x so wählen dass die möglichst wenig abgezogen wird.

Wie finde ich dieses x? Iterativ?

Bezug
                        
Bezug
Maximierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 So 09.03.2008
Autor: leduart

Hallo,
Wie schon gesagt, das max wird erricht, wenn nichts abgezogen wird, wenn also die 2 Max(..., 0) sind. das ist nur der Fall bei x=40.
Wenn x>40 wird schon mit x selbst mehr abgezogen und dann noch mal [mm] \alpha*..,wenn [/mm] x<40 und [mm] \beta [/mm] <1/3 gibts noch ein anderes Max, aber das hängt von [mm] \beta [/mm] ab,
[mm] x+\beta*((120-x)-2x) [/mm] möglichst klein ist bei bekanten [mm] \beta [/mm] ja klar.
(ich hab vors. [mm] \alpha, \beta [/mm] >0
Gruss leduart

Bezug
                                
Bezug
Maximierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 So 09.03.2008
Autor: gandhito

Danke. Das mit den 40 habe ich jetzt auch rausgefunden.

gegeben:

Fall 1: [mm] \alpha [/mm] = [mm] \beta [/mm] = 1/3 + [mm] \epsilon [/mm]
Fall 2: [mm] \alpha [/mm] = [mm] \beta [/mm] = 1/3 - [mm] \epsilon [/mm]    

Weiss auch nicht genau was epsilon sein solte...irgendein Fehlertherm. Aber es ändert eigentlich nichts am Maximum von x = 40, oder?  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]