Max. Lösungsintervall < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sei das folgende AWP: [mm]y'=x^2+y^2, y(0)=0[/mm] in [mm]\IR^2[/mm]. Bestimmen Sie das größte Lösungsintervall auf dem der Satz von Peano eine lösung garantiert. Wie lautet die Antwort, wenn Sie im AWP [mm]y'=x^2+y^2, y(0)=0[/mm] durch [mm]y'= \left| x\right|^p+\leftt| y\right| ^p, p>1[/mm] ersetzen? |
Hallo!
Ich bin mir nicht so ganz sicher, ob ich verstanden habe was zu tun ist. Also, der Satz von Peano gilt für AWP's der Form [mm]y'=f(x,y), y(x_0)=y_0[/mm] wobei f stetig sein soll, das paßt ja schon mal. Dann kann ich ein Intervall der um [mm]x_0[/mm] der Form [mm]\left[x_0-a,x_0+a\right], a>0[/mm] und einen Ball um [mm]y_0[/mm] mit Radius [mm]b, b>0[/mm] finden, sodaß für [mm]Z_a_b=\left[x_0-a,x_0+a\right]xB_b(y_0)[/mm] und [mm]M=max\{\left|f(x,y)\right| :(x,y) \in Z_a_b\}[/mm] gilt: falls [mm]\bruch{b}{M}\ge a[/mm], dann ist [mm]\left[x_0-a,x_0+a\right][/mm] das größtmögliche Lösungsintervall.
Wenn ich die Aufgabe richtig verstanden habe, dann muß man gar keine explizite Lösung des AWP bestimmen. Ich betrachte also Intervalle um den Punkt (0,0). Da die Funktion f Summe von Parabeln ist, ist das Maximum [mm]M=a^2+b^2[/mm]. Jetzt kommt der Teil den ich nicht verstehe: Ich kann doch sowohl a, als auch b beliebig wählen und damit auch für den immer steiler ansteigenden Parabelast das Intevall auf der x-Achse so klein machen, das die Funktion f noch auf dem gesamten Intervall definiert ist - dann wäre mein maximales Lösungsintervall aber ganz [mm]\IR[/mm]? Das kann doch nicht stimmen, oder?
Liebe Grüße
couldbeworse
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Do 17.05.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|