matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMax-Likelihood Binomialverteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Max-Likelihood Binomialverteil
Max-Likelihood Binomialverteil < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max-Likelihood Binomialverteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 25.01.2010
Autor: Hoffmann79

Aufgabe
Schätzen Sie unter Anwendung der Maximum-Likelihood-Methode den Parameter p (0>p>1) einer Binomialverteilung bei vorgegebenem Parameterwert n aufgrund einer Stichprobe vom Umfang m!

Zuerstmal sorry an die Mods, habe die Aufgabe aus Versehen in Schulstochastik eingestellt und nicht hierher verschieben können. In der Hoffnung auf eine Antwort habe ich die Frage nochmal hier eingestellt, wo sie eigentlich auch hingehört.

Hallo allerseits,

hänge bei obiger Aufgabe, hauptsächlich ist die Kombination das Problem, bzw. ich nicht weiß wie ich diese sinnvoll auflösen kann.

Ansatz: Parameter n bekannt, Umfang m, [mm] p=\theta [/mm]

[mm] P(X=k)=\vektor{n \\ k}p^{k}(1-p)^{n-k} [/mm]

[mm] L(x_{1},...,x_{m};\theta)=\produkt_{i=1}^{n}\vektor{n \\ x}\theta^{x}(1-\theta)^{n-x} [/mm]

[mm] lnL(x_{1},...,x_{m};\theta)=\sum_{i=1}^{n}ln[\vektor{n \\ x_{i}}\theta^{x_{i}}(1-\theta)^{n-x_{i}}] [/mm]

[mm] lnL(x_{1},...,x_{m};\theta)=\sum_{i=1}^{n}[ln\vektor{n \\ x_{i}}+x_{i}ln\theta+(n-x_{i})ln(1-\theta)] [/mm]

Tja, und nun hänge ich fest. Normalerweise würde ich jetzt die Klammer mit dem Logarithmus auflösen, aber ich weiß nich wie ich [mm] \vektor{n \\ x_{i}}\theta^{x_{i}} [/mm] zerlege.



        
Bezug
Max-Likelihood Binomialverteil: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mo 25.01.2010
Autor: luis52

Moin Daniel,

mach mal weiter mit der letzten Gleichung. Das wird!

vg Luis

Bezug
                
Bezug
Max-Likelihood Binomialverteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 25.01.2010
Autor: Hoffmann79

Hallo Luis, mal wieder ;-),

hab schon mal weiter versucht.

[mm] \bruch{\partial(lnL)}{\partial\theta}=\bruch{\summe_{i=1}^{n}x_{i}}{\theta}-\bruch{\summe_{i=1}^{n}(n-x_{i})}{1-\theta} [/mm]

Tja, und dann? Weiß im Moment nicht wie ich das zerlegen soll.



Bezug
                        
Bezug
Max-Likelihood Binomialverteil: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mo 25.01.2010
Autor: luis52

Hallo Daniel,

musste doch noch etwas feilen:


$ [mm] L(x_{1},...,x_{m};\theta)=\produkt_{i=1}^{\red m}\vektor{n \\ x}\theta^{x}(1-\theta)^{n-x} [/mm] $

$ [mm] \ln L(x_{1},...,x_{m};\theta)=\sum_{i=1}^{\red m}\ln[\vektor{n \\ x_{i}}\theta^{x_{i}}(1-\theta)^{n-x_{i}}] [/mm] $

$ [mm] \ln L(x_{1},...,x_{m};\theta)=\sum_{i=1}^{\red m}[\ln\vektor{n \\ x_{i}}+x_{i}\ln\theta+(n-x_{i})\ln(1-\theta)] [/mm] $

[mm] $\bruch{\partial(\ln L)}{\partial\theta}=\bruch{\summe_{i=1}^{\red m}x_{i}}{\theta}-\bruch{\summe_{i=1}^{\red m}(n-x_{i})}{1-\theta} [/mm] $

Das Maximum findest du indem du die [mm] $\bruch{\partial(\ln L)}{\partial\theta}=0$ [/mm] nach [mm] $\theta$ [/mm] aufloest. (Ein Knaller waere es, wenn du noch die hinreichende Bedingung [mm] $\bruch{\partial^2(\ln L)}{\partial\theta^2}<0$ [/mm] zeigst. )

vg Luis
            

Bezug
                                
Bezug
Max-Likelihood Binomialverteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 25.01.2010
Autor: Hoffmann79

So, dann bastle ich mal ein wenig. Bin mir noch unklar wie ich die [mm] \summe_{i=1}^{m}(n-x_{i}) [/mm] verarbeite, aber ich versuch es mal.

[mm] \bruch{\summe_{i=1}^{m}}{\theta}=\bruch{\summe_{i=1}^{m}(n-x_{i})}{1-\theta} [/mm]

Nach [mm] \theta [/mm] aufgelöst [mm] \theta=\bruch{\summe_{i=1}^{m}x_{i}}{ \summe_{i=1}^{m}n} [/mm]

Die Summe im Zähler wird zu [mm] \bar{x}. [/mm] Was wird aus dem Nenner, n?

Dann würde die 2te Ableitung [mm] \bruch{\partial^{2}(lnL)}{\partial\theta^{2}}=-\bruch{\summe_{i=1}^{m}}{\theta^{2}}-\bruch{\summe_{i=1}^{m}(n-x_{i})^{2}}{(1-\theta)^{2}} [/mm]

???

Bezug
                                        
Bezug
Max-Likelihood Binomialverteil: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 25.01.2010
Autor: luis52


> So, dann bastle ich mal ein wenig. Bin mir noch unklar wie
> ich die [mm]\summe_{i=1}^{m}(n-x_{i})[/mm] verarbeite, aber ich
> versuch es mal.
>  
> [mm]\bruch{\summe_{i=1}^{m}}{\theta}=\bruch{\summe_{i=1}^{m}(n-x_{i})}{1-\theta}[/mm]

Kleiner Schoenheitsfehler:

[mm]\bruch{\summe_{i=1}^{m}{\red{x_i}}}{\theta}=\bruch{\summe_{i=1}^{m}(n-x_{i})}{1-\theta}[/mm]


>  
> Nach [mm]\theta[/mm] aufgelöst
> [mm]\theta=\bruch{\summe_{i=1}^{m}x_{i}}{ \summe_{i=1}^{m}n}[/mm]
>  
> Die Summe im Zähler wird zu [mm]\bar{x}.[/mm]

[verwirrt]

>Was wird aus dem  Nenner, n?


[mm]\hat\theta=\bruch{\summe_{i=1}^{m}x_{i}}{ \summe_{i=1}^{m}n}=\bruch{\summe_{i=1}^{m}x_{i}}{mn}[/mm]

*Das* ist der ML-Schaetzer: In der Tat ein arthritisches Mittel.

>  
> Dann würde die 2te Ableitung
> [mm]\bruch{\partial^{2}(lnL)}{\partial\theta^{2}}=-\bruch{\summe_{i=1}^{m}}{\theta^{2}}-\bruch{\summe_{i=1}^{m}(n-x_{i})^{2}}{(1-\theta)^{2}}[/mm]

Wo liegt denn

[mm]\left.\bruch{\partial^{2}(lnL)}{\partial\theta^{2}}\right|_{\theta=\hat\theta}=-\bruch{\summe_{i=1}^{m}x_i}{\hat\theta^{2}}-\bruch{\summe_{i=1}^{m}(n-x_{i})^{2}}{(1-\hat\theta)^{2}}[/mm]  ?

[gutenacht]

vg Luis
  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]