matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMatrizenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Matrizenraum
Matrizenraum < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenraum: lin Unabhängigkeit
Status: (Frage) beantwortet Status 
Datum: 12:43 Mi 18.04.2007
Autor: AndyH

Aufgabe
Sei S= [mm] \pmat{ 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 } [/mm] Sei K die menge aller A [mm] \in M_{3} (\IQ), [/mm] für die gilt AS=SA

Man zeige:
Für jeden Vektor x [mm] \in \IQ³, [/mm] x [mm] \not= [/mm] 0 gilt, dass x, Sx, S²x linear unabhängig sind.

ANleitung dafür:
Man verwende, dass das char. Polynom von S keine Nullstellen in [mm] \IQ [/mm] hat und zeige:
(i) Sx [mm] \not\in [/mm] <x>; (ii) S²x [mm] \not\in [/mm] <x, Sx>

Für (ii) ergänze man x, Sx mit einem y zu einer Basis von [mm] \IQ³ [/mm] und betrachte die Darstellungsmatrix der lin Abbildung [mm] \IQ³ \to \IQ³, [/mm] v [mm] \mapsto [/mm] Sv bzgl dieser Basis; was folgt für das char Polynom von S, wenn (ii) nicht gilt?

ich glaub mit (i) bin ich noch ganz gut bedient, aber (ii) ist mir nicht klar. Wie sollte ich vorgehen nach dieser ANleitung?
Oder gibt es noch elegantere Möglichkeiten?

        
Bezug
Matrizenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Sa 21.04.2007
Autor: felixf

Hallo!

> Sei S= [mm]\pmat{ 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 }[/mm] Sei K
> die menge aller A [mm]\in M_{3} (\IQ),[/mm] für die gilt AS=SA

Was hat $K$ mit dem Rest der Aufgabe zu tun?

>  
> Man zeige:
>  Für jeden Vektor x [mm]\in \IQ³,[/mm] x [mm]\not=[/mm] 0 gilt, dass x, Sx,
> S²x linear unabhängig sind.
>  
> ANleitung dafür:
>  Man verwende, dass das char. Polynom von S keine
> Nullstellen in [mm]\IQ[/mm] hat und zeige:
>  (i) Sx [mm]\not\in[/mm] <x>; (ii) S²x [mm]\not\in[/mm] <x, Sx>
>  
> Für (ii) ergänze man x, Sx mit einem y zu einer Basis von
> [mm]\IQ³[/mm] und betrachte die Darstellungsmatrix der lin Abbildung
> [mm]\IQ³ \to \IQ³,[/mm] v [mm]\mapsto[/mm] Sv bzgl dieser Basis; was folgt
> für das char Polynom von S, wenn (ii) nicht gilt?
>  
> ich glaub mit (i) bin ich noch ganz gut bedient, aber (ii)
> ist mir nicht klar. Wie sollte ich vorgehen nach dieser
> ANleitung?

Genau so wie es da steht ;-)

Zu (i): Wenn $S x [mm] \in \langle [/mm] x [mm] \rangle$ [/mm] ist, gibt es ein [mm] $\lambda \in \IQ$ [/mm] mit $S x = [mm] \lambda [/mm] x$. Da $x [mm] \neq [/mm] 0$ ist, ist [mm] $\lambda$ [/mm] ein Eigenwert von $A$. Was folgt daraus fuer das charakteristische Polynom von $A$?

Zu (ii): Sei $y [mm] \in \IQ^3$ [/mm] so, dass [mm] $\{ x, S x, y \}$ [/mm] linear unabhaengig ist. Angenommen, es gilt [mm] $S^2 [/mm] x [mm] \in \langle [/mm] x, S x [mm] \rangle$. [/mm] Dann gibt es [mm] $\lambda_1, \lambda_2 \in \IQ$ [/mm] mit [mm] $S^2 [/mm] x = [mm] \lambda_1 [/mm] x + [mm] \lambda_2 [/mm] S x$. Seien weiter [mm] $\mu_1, \mu_2, \mu_3 \in \IQ$ [/mm] mit $S y = [mm] \mu_1 [/mm] x + [mm] \mu_2 [/mm] S x + [mm] \mu_3 [/mm] y$. Die Darstellungsmatrix von $x [mm] \mapsto [/mm] A x$ bezueglich der Basis $(x, S x, y)$ ist also $M = [mm] \pmat{ 0 & \lambda_1 & \mu_1 \\ 1 & \lambda_2 & \mu_2 \\ 0 & 0 & \mu_3 }$. [/mm]

Jetzt ist das charakteristische Polynom von $M$ gleich dem von $A$ (weisst du warum?). Berechne mal das charakteristische Polynom von $M$. Faellt dir was auf?

> Oder gibt es noch elegantere Möglichkeiten?

Sie ist doch ziemlich elegant :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]