matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizenmultiplikation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrizenmultiplikation
Matrizenmultiplikation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultiplikation: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:40 Do 17.12.2009
Autor: Roxas_Roxas

Aufgabe
Es sei [mm] A=\pmat{ 1 & 2 & 3 \\ 1 & 2 & 0 \\ 1 & 0 & 0} \in M_{3}(\IR) [/mm]

1. Bestimme eine 3x3 Matrix B so, dass : A*B=E gilt, wobei E die Einheitsmatrix ist.

2. Schreibe die Matrix A als Produkt von Elementarmatrizen.

Hallo
Also die 1. Aufgabe, da hab ich mir gedacht einfach eine allgemeine 3x3 Matrix B zu machen, also:
[mm] B=\pmat{ b_{1,1} & b_{1,2} & b_{1,3}\\ b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,1} & b_{3,2} & b_{3,3}} [/mm]
Dann einfach A*B berechnen.
Dann muss die Element in der 1. Zeile und 1. Spalte =1 sein
Elemente aus der 1. Zeile und der 2. und 3. Spalte =0 usw.
Dann kann ich daraus ja ein großes Gleichungssystem machen mit 3*3=9 gleichungen und bekomme dann die Elemente von B raus.
Darf man das so machen?

Zu Aufgabe 2 hab ich leider überhaupt keinen Ansatz. Kann mir da jemand helfen?

Danke im Voraus

        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Do 17.12.2009
Autor: leduart

Hallo
Ja, das kann man so machen, allerdings alle 3 GS gleichzeitig behandeln, weil ja der homogene Teil immer derselbe ist. dann hast du keine so endlose Rechnung.
Sieh dir zum geschickten Rechnen und überprüfen deiner Ergebnisse den link an [url=http://www.arndt-bruenner.de/mathe/scripts/inversematrix.htm] inverseM-Brünner [/url[
Gruss leduart

Bezug
                
Bezug
Matrizenmultiplikation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Do 17.12.2009
Autor: Roxas_Roxas

ok danke
und wie muss ich bei Aufgabe 2 vorgehen?

Bezug
                        
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 17.12.2009
Autor: Roxas_Roxas

Ah verstehe.
das Inverse berechnen. Das geht ja dann auch recht einfach mit dem Gauß-Jordan-Algorithmus.
OK Danke
Aber zu 2. weiß ich echt nicht, was ich da machen soll.

Bezug
                                
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Fr 18.12.2009
Autor: angela.h.b.


> Ah verstehe.
>  das Inverse berechnen. Das geht ja dann auch recht einfach
> mit dem Gauß-Jordan-Algorithmus.
> OK Danke
>  Aber zu 2. weiß ich echt nicht, was ich da machen soll.

Hallo,

ich weiß nun nicht, wie weit Deine Überlegungen zum Thema Elementarmatrizen gediehen sind.

Bei der wikipedia kannst Du Dir durchlesen, wie sie aussehen, und was sie bewirken.

Damit solltest Du dan nerste Versuche unternehmen können.

(Gauß-Jordan kannst Du ja auch mithilfe v. Elementarmatrizen schreiben.)

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]