matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizenmultiplikation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrizenmultiplikation
Matrizenmultiplikation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Fr 22.05.2009
Autor: Fawkes

Aufgabe
1) Man zeige, dass für jede m × n-Matrix A gilt: [mm] E_{m} [/mm] · A = A.
2) Sei [mm] 0_{n} [/mm] die n × n-Nullmatrix. Man zeige [mm] 0_{n} [/mm] · A = A · [mm] 0_{n} [/mm] = [mm] 0_{n} [/mm] ∀A ∈ [mm] M_{n}(K). [/mm]
3) Man finde zwei n × n-Matrizen A,B [mm] \not= [/mm] 0 mit A · B = 0. Kann man dabei A = B wählen?

hallo,
also die aufgaben hab ich alle mit hinschreiben der matrizen also vielen pünktchen und viel geschreibe gemacht. meine frage ist deshalb ob diese aufgaben auch anderes zu zeigen sind, sprich mit der summenschreibweise in bezug auf die matrizenmultiplikation. und zu der dritten hab ich raus das man A nicht gleich B wählen kann ist das richtig oder gibt es doch eine möglichkeit? danke schon mal vorweg.
gruß fawkes

        
Bezug
Matrizenmultiplikation: Teil3.)
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 22.05.2009
Autor: XPatrickX

Hallo,


wähle [mm] A=B=\pmat{ 0 & 1 \\ 0 & 0 } [/mm]
Dann ist [mm] A*B=A^2=0 [/mm]


Gruß Patrick

Bezug
        
Bezug
Matrizenmultiplikation: Teil2)
Status: (Antwort) fertig Status 
Datum: 23:54 Fr 22.05.2009
Autor: XPatrickX

Sei B=A*0 bzw. B'=0*A
Es reicht ja wenn du zeigst [mm] b_{ij}=b'_{ij}=0 [/mm] für alle i,j=1,...n. Überlege dir wie [mm] b_{ij} [/mm] bzw $b'_{ij}$ definiert ist über die Summenschreibweise.

Bezug
                
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Sa 23.05.2009
Autor: Fawkes

also die summen hab ich mir jetzt wie folgt überlegt:
[mm] b_{ij}=\summe_{l=1}^{n}a_{il}*0_{lj}=0 [/mm]
[mm] b'_{ij}=\summe_{l=1}^{n}0_{il}*a_{lj}=0 [/mm]
ist das so richtig und wenn ja reicht das dann so?
und kann man die aufgabe mit der einheitsmatrix auch mit hilfe von summen schreiben? danke wie immer schon mal vorweg :)

Bezug
                        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:04 So 24.05.2009
Autor: angela.h.b.


> also die summen hab ich mir jetzt wie folgt überlegt:
>  [mm]b_{ij}=\summe_{l=1}^{n}a_{il}*0_{lj}=0[/mm]
>  [mm]b'_{ij}=\summe_{l=1}^{n}0_{il}*a_{lj}=0[/mm]
>  ist das so richtig und wenn ja reicht das dann so?

Hallo,

wenn Du das Drumherum mit aufschreibst: ja.

>  und kann man die aufgabe mit der einheitsmatrix auch mit
> hilfe von summen schreiben?

Klar.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]