matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeMatrizengleichungssystem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Matrizengleichungssystem
Matrizengleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizengleichungssystem: Tipps zur Lösung.
Status: (Frage) beantwortet Status 
Datum: 15:50 So 09.07.2006
Autor: finns0rn

Hallo liebes Forum,

ich hab mich mal in meinem Zweifel hier angemeldet, denn ich komme nicht auf die Lösung und es wäre nett, wenn ihr mir auf die Sprünge helfen könntet. Ich habe folgende Gleichungen gegeben (Großbuchstaben beschreiben die Matrizen) und soll aus diesen Beiden die Matrizen X und Y berechnen (alle Matrizen der Dimension 2x2):

1.) [mm] 2AX + BY = C[/mm]
2.) [mm] 3AX - 2Y = B[/mm]

Die Operationen, die man mit Matrizen durchführen kann (insbesondere aller Besonderheiten) sind mir durchaus klar, mein Ansatz war nun eine Gleichung nach einer gesuchten Matrix aufzulösen und dann in die andere einzusetzen. Ich kann ja mal ein Beispiel machen, wie ich mir das so gedacht hatte:

Man nehme Gleichung 2.) und löse nach AX auf:

[mm]3AX - 2Y = B[/mm]

[mm]3AX = B + 2Y[/mm]

[mm]AX = \bruch{1}{3}B + \bruch{2}{3}Y[/mm]

Dann einsetzen in 1.):

[mm]2(\bruch{1}{3}B+\bruch{2}{3}Y) + BY = C[/mm]

[mm] \bruch{2}{3}B+\bruch{4}{3}Y + BY = C [/mm]

[mm] \bruch{4}{3}Y + BY = C- \bruch{2}{3}B [/mm]

[mm] (\bruch{4}{3}E + B)Y =C- \bruch{2}{3}B [/mm]

[mm] Y = (\bruch{4}{3}E + B)^{-1}*(C- \bruch{2}{3}B)[/mm]

Wo liegt mein Fehler und kann man diese Aufgabe auch einfacher lösen als ich es getan habe? Herzlichen Dank für die kompetente Hilfe,

Finn
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt....)


        
Bezug
Matrizengleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 So 09.07.2006
Autor: mathemak

Hallo!

> 1.) [mm]2AX + BY = C[/mm]
>  2.) [mm]3AX - 2Y = B[/mm]
>  

1') [mm] $6\,AX [/mm] + [mm] 3\,BY [/mm] = [mm] 3\,C$ [/mm]
2') [mm] $-6\,AX [/mm] + [mm] 4\,Y [/mm] = -2B$

1') + 2')

$ [mm] 3\,BY +4\,Y [/mm] = [mm] 3\,C [/mm] - [mm] 2\,B$ [/mm]

$ [mm] (3\,B [/mm] + [mm] 4\,E) \.Y [/mm] = [mm] 3\,C -2\,B$ [/mm]

$ Y = (3B+4E)^(-1) * [mm] (3\,C-2\,B)$ [/mm]



Gruß

mathemak

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]