matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizengleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Matrizengleichungen
Matrizengleichungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizengleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 05.12.2004
Autor: shifty

Hallo,

ich weiss nicht wirklich ob ich da richtig liege:

Lösen Sie folgende Matrizengleichungen nach X auf:

a.) A*X=B

= meine ich ist ganz normal!? X=B/A

b.) X*B=A

= meine ist ist ganz normal!? X=A/B

c.) D*X+B-C=4*(X-A)+G*X

= Kein Plan!

        
Bezug
Matrizengleichungen: Anders
Status: (Antwort) fertig Status 
Datum: 18:23 So 05.12.2004
Autor: e.kandrai

Zuerstmal: die Division von Matrizen ist gar nicht definiert.
Um eine 'unerwünschte' Matrix als Faktor wegzubekommen, muss man mit der Inversen durchmultiplizieren. Und zwar von der richtigen Seite, denn das Kommutativgesetz bei der Multiplikation gilt nicht, d.h. [mm]AB \not= BA[/mm] (außer in ganz seltenen Fällen, aber i.a. nicht).

Um also bei deiner 1. Gleichung [mm]A \cdot X = B[/mm] das X zu 'befreien', muss man das A wegbekommen, also mit [mm]A^{-1}[/mm] durchmultiplizieren. Und ganz wichtig: weil das A links steht, muss man von links durchmultiplizieren (warum, zeige ich nachher auf).

Also hat man hier: [mm]A \cdot X = B[/mm]  [mm]| \cdot A^{-1}[/mm] von links
[mm]\gdw[/mm]  [mm]A^{-1} \cdot A \cdot X = A^{-1} \cdot B[/mm]
[mm]\gdw[/mm]  [mm]X = A^{-1} \cdot B[/mm]

Dabei habe ich verwendet: [mm]A^{-1} \cdot A = A \cdot A^{-1} = E[/mm]

Was würde passieren, wenn man das [mm]A^{-1}[/mm] "von egal welcher Seite dranmultipliziert"? Wenn's von rechts dranmultipliziert wird, hätte man den Fall [mm]A \cdot X \cdot A^{-1} = B \cdot A^{-1}[/mm]
Problem: auf der linken Seite kommen die [mm]A[/mm] und [mm]A^{-1}[/mm] nicht zusammen, da wegen dem nicht geltenden  Kommutativgesetz die Faktoren nicht so 'verschoben' werden dürfen, dass 'es gerade passt'.

Die zweite Aufgabe kannst jetzt selber mal probieren, ist jetzt wohl ziemlich einfach.

Noch ein paar Hinweise zur dritten Aufgabe:
wenn man aus dem Term [mm]4x^2+2x[/mm] das [mm]2x[/mm] ausklammert, dann hat erhält man [mm]2x \cdot (2x + 1)[/mm].
Und so, wie das "+1" übrigbleibt, gibt's auch eine Rechenregel beim Ausklammern von Matrizen.
Hat man z.B. den Fall [mm]4A+BA[/mm], und will das A ausklammern, so erhält man [mm](4E+B)A[/mm].
WICHTIG: das E ist die Einheitsmatrix, sie ist das sog. 'multiplikative neutrale Element" der Matrizenmultiplikation, wie die Zahl 1 beim Multiplizieren von Zahlen. Und ein Term [mm]4+B[/mm] in der Klammer wäre gar nicht definiert, da man eine Zahl nicht zu einer Matrix addieren kann.
NOCH WICHTIGER: auch beim Ausklammern ist es wichtig, in welcher Reihenfolge die Faktoren nachher dastehen! Hier musste das A rechts an die Klammer ran, da A auch bei beiden Summanden rechts stand (vor dem Ausklammern).
Und jetzt lös mal alle Klammern durch Ausmultiplizieren, bring alle Summanden mit der Matrix X auf eine Seite, alle ohne X auf die andere, und isoliere das X durch ausklammern und richtigem Durchmultiplizieren mit der Inversen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]