matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizengleichung lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrizengleichung lösen
Matrizengleichung lösen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizengleichung lösen: P*A+A'*P=-Q nach P auflösen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:03 Mo 08.03.2010
Autor: feelx86

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich möchte die Matrizengleichung P*A+A'*P=-Q nach P auflösen, wobei A und Q jeweils quadratisch sind. Gibt es für diese Gleichung eine Lösungsgleichung in Matrizenform oder muss ich den Weg das lineare Gleichungssystem einschlagen?

Danke für eure Hilfe

Gruß


Felix



        
Bezug
Matrizengleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Mo 08.03.2010
Autor: straussy

Ist das eine Übungsaufgabe? Ich glaube nämlich, dass die Gleichung [mm]XA+BX=C[/mm] nicht so einfach nach [mm]X[/mm] auflösbar ist. Falls du doch eine Lösung findest, dann poste sie mal bitte. Die Aufgabe ist durchaus interessant.

Bezug
        
Bezug
Matrizengleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:55 Mi 10.03.2010
Autor: angela.h.b.


> ich möchte die Matrizengleichung P*A+A'*P=-Q nach P
> auflösen, wobei A und Q jeweils quadratisch sind.

Hallo,

[willkommenmr].

Du solltest hier mal die vollständige Aufgabe im Originalwortlaut posten.
Worum geht es denn genau? (Was ist A' ?)

Gruß v. Angela.




Bezug
        
Bezug
Matrizengleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:06 Mi 10.03.2010
Autor: feelx86

Hallo,

die Gleichung bezieht sich nicht auf eine Aufgabe sondern auf eine Herleitung in einem Script. Es geht hierbei um die Lyapunov Stabilität eines Systems (in der Regelungstechnik). A ist hierbei die Systemmatrix und P folgt aus der Potentialfunktion V(x)=x'*P*x.

Die Ableitung nach der Zeit folgt dann mit V_punkt=x'(PA+A'P)*x=-x'*Q*x

Q muss für asymptotische Stabilität positiv definit sein und somit ist die Bedingung für asymptotische Stabilität:


P*A+A'*P=-Q
Q lässt sich beliebig annehmen, muss aber positiv definit sein. Daraus ergibt sich dann eine Lösung P.  P muss symmetrisch und ebenfalls positiv semidefinit sein um stabilität zu gewährleisten.

Es geht mir aber eigentlich nur um die Frage ob es möglich ist die Gleichung nach P aufzulösen, ich habe es nämlich nicht hinbekommen.

Gruß

Felix



Bezug
                
Bezug
Matrizengleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 10.03.2010
Autor: straussy

Gibt es auch irgendwelche Informationen über A? Falls A symmetrisch und invertierbar ist, ist die Lösung einfach [mm]P=-\frac{1}{2}A^{-1}Q[/mm].

Da du ja schon voraussetzt, dass [mm]P[/mm] symmetrisch ist, kannst du das auch in der Ableitung benutzen. [mm]\nabla V(x) =2Px[/mm]
Wenn ich das richtig verstanden habe, ist dein System [mm]\dot{x}=Ax[/mm]. Und dann ist die Richtungsableitung von [mm]V[/mm] in Richtung [mm]Ax[/mm] gleich [mm]2x^TP^TAx[/mm]. Also [mm]\dot{V}(x)=2x^TPAx=-x^TQx[/mm] und damit [mm]P=-\frac{1}{2}QA^{-1}[/mm].

Gruß
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]