matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen multiplizieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Matrizen multiplizieren
Matrizen multiplizieren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen multiplizieren: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:36 Sa 25.11.2006
Autor: KnockDown

Aufgabe
Im Folgenden sind Paare von Matrizen A und B gegben. Berechnen Sie jeweils die Matrix C, die die Komposition der linearen Abbildungen [mm] $F_B \circ F_A$ [/mm] beschreibt, d. h. Matrix C, für die gilt [mm] $F_C=F_B \circ F_A$. [/mm]

Hi, ich glaube ich kann diese Matrizen nicht miteinander multiplizieren da doch die Spaltenanzahl von A mit der Zeilenanzahl von B übereinstimmt.

Oder gibt es da doch eine Möglichkeit?


Ups... *g* vergessen! Sorry!

Also noch die Aufgabe:


a)
A := [mm] $\pmat{ 2 & -1 \\ -3 & 5 }$ [/mm]

B := [mm] $\pmat{ -2 & -5 \\ 3 & 11 \\ 7 & -3}$ [/mm]

Danke für die Hilfe!



Gruß Thomas


        
Bezug
Matrizen multiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Sa 25.11.2006
Autor: SEcki


> Im Folgenden sind Paare von Matrizen A und B gegben.
> Berechnen Sie jeweils die Matrix C, die die Komposition der
> linearen Abbildungen [mm]F_B \circ F_A[/mm] beschreibt, d. h. Matrix
> C, für die gilt [mm]F_C=F_B \circ F_A[/mm].
>  Hi, ich glaube ich kann
> diese Matrizen nicht miteinander multiplizieren da doch die
> Spaltenanzahl von A mit der Zeilenanzahl von B
> übereinstimmt.

??? Da steht nicht, was denn A und B überhaupt sind. Bei passenden A, B kann man das lösen. Da fehlt doch wa,s oder?

SEcki

Bezug
                
Bezug
Matrizen multiplizieren: gelöst!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Sa 25.11.2006
Autor: KnockDown

Aufgabe
Im Folgenden sind Paare von Matrizen A und B gegben. Berechnen Sie jeweils die Matrix C, die die Komposition der linearen Abbildungen [mm] $F_B \circ F_A$ [/mm] beschreibt, d. h. Matrix C, für die gilt [mm] $F_C=F_B \circ F_A$. [/mm]

Sorry, hatte ich vergessen!


Hi, ich glaube ich kann diese Matrizen nicht miteinander multiplizieren da doch die Spaltenanzahl von A mit der Zeilenanzahl von B übereinstimmt.

Oder gibt es da doch eine Möglichkeit?


Ups... *g* vergessen! Sorry!

Also noch die Aufgabe:


a)
A := [mm] $\pmat{ 2 & -1 \\ -3 & 5 }$ [/mm]

B := [mm] $\pmat{ -2 & -5 \\ 3 & 11 \\ 7 & -3}$ [/mm]

Danke für die Hilfe!

Dieser Thread kann als gelöst markiert werden! Danke!


Gruß Thomas

Bezug
                        
Bezug
Matrizen multiplizieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:32 Sa 25.11.2006
Autor: SEcki


> a)
>  A := [mm]\pmat{ 2 & -1 \\ -3 & 5 }[/mm]
>  
> B := [mm]\pmat{ -2 & -5 \\ 3 & 11 \\ 7 & -3}[/mm]

Naja, B*A geht aber.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]