matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen mit Parameter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Matrizen mit Parameter
Matrizen mit Parameter < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen mit Parameter: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:50 Fr 08.07.2016
Autor: Fjury

Aufgabe
Seien die Matrix [mm] \mathcal{A} \in [/mm] M (3 x 3, [mm] \IR), [/mm] mit einem beliebigen reelen Parameter a und b [mm] \in \IR^{3}: [/mm]

A = [mm] \pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 5 & -5 & 19 } [/mm]
B = [mm] \pmat{ 4 \\ 3a+1 \\ 24 } [/mm]

i) Bestimmen sie die Lösungsmenge von Ax=b in Abhängigkeit von a.
ii) Berechnen sie den Rang der Matrix A in Abhängigkeit von a.
iii) Ist die Abbildung A surjektiv bzw. injektiv?

Sind die Ergebnisse korrekt?

i)

für [mm] x_{3}=1 [/mm]

[mm] (a^{2}+a)x_{2}+ [/mm] 2a = 3a + 1

[mm] x_{2}=\bruch{a+1}{a^{2}+a} [/mm]

[mm] x_{1} [/mm] - [mm] \bruch{a+1}{a^{2}+a} [/mm] + 3= 4

[mm] x_{1}= [/mm] 1 + [mm] \bruch{a+1}{a^{2}+a} [/mm]

ii)
A = [mm] \pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 5 & -5 & 19 } [/mm]

A = [mm] \pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 0 & 0 & 4 } [/mm]

A = [mm] \pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 0 & 0 & 1 } [/mm]

Rang= 2 für a=0
Rang= 3 für [mm] a\not= [/mm] 0

iii)

Für a=0 keins von beiden
Für a [mm] \not= [/mm] 0 injektiv, da Anzahl Spalten= Rang A

Grüße Adrian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrizen mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Sa 09.07.2016
Autor: fred97


> Seien die Matrix [mm]\mathcal{A} \in[/mm] M (3 x 3, [mm]\IR),[/mm] mit einem
> beliebigen reelen Parameter a und b [mm]\in \IR^{3}:[/mm]
>  
> A = [mm]\pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 5 & -5 & 19 }[/mm]
>  
> B = [mm]\pmat{ 4 \\ 3a+1 \\ 24 }[/mm]
>  
> i) Bestimmen sie die Lösungsmenge von Ax=b in
> Abhängigkeit von a.
>  ii) Berechnen sie den Rang der Matrix A in Abhängigkeit
> von a.
>  iii) Ist die Abbildung A surjektiv bzw. injektiv?
>  Sind die Ergebnisse korrekt?
>  
> i)
>  
> für [mm]x_{3}=1[/mm]
>  
> [mm](a^{2}+a)x_{2}+[/mm] 2a = 3a + 1
>  
> [mm]x_{2}=\bruch{a+1}{a^{2}+a}[/mm]

Hier solltest Du die Fälle a=0, a=-1 und (a [mm] \ne [/mm] 0 , a [mm] \ne [/mm] -1) unterscheiden !!!


>  
> [mm]x_{1}[/mm] - [mm]\bruch{a+1}{a^{2}+a}[/mm] + 3= 4
>  
> [mm]x_{1}=[/mm] 1 + [mm]\bruch{a+1}{a^{2}+a}[/mm]

s.o.


>  
> ii)
>  A = [mm]\pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 5 & -5 & 19 }[/mm]
>  
> A = [mm]\pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 0 & 0 & 4 }[/mm]
>  
> A = [mm]\pmat{ 1 & -1 & 3 \\ 0 & a(a+1) & 2a \\ 0 & 0 & 1 }[/mm]
>  
> Rang= 2 für a=0
>  Rang= 3 für [mm]a\not=[/mm] 0

Na, na, was ist mit a=-1 ?


>  
> iii)
>  
> Für a=0 keins von beiden
>  Für a [mm]\not=[/mm] 0 injektiv, da Anzahl Spalten= Rang A

Wieder a=-1 ?

FRED

>  
> Grüße Adrian
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Matrizen mit Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Sa 09.07.2016
Autor: Fjury

i)
da geb ich dir recht, hab ich vergessen hinzuschreiben ^^.
Danke dir, aber bei

ii) & iii)
a=-1 lässt nur in der zweiten spalte den wert 0 werden. Das verändert jedoch nichts am rang der matrix, da noch -2 als 3ter wert übrig bleibt.

Wenn a [mm] \not= [/mm] 0 beinhaltet das automatisch auch die reelle Zahl -1 als Wert für a. Da injektiv und surjektiv abhängig vom rang sind, gilt das gleiche wie bei ii).

Oder soll ich einfach, damit es überprüft ist auch noch hinschreiben? Wäre vermutlich nicht schlecht, dann gibts auch keinen Abzug ^^.



Bezug
                        
Bezug
Matrizen mit Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 So 10.07.2016
Autor: fred97

für a=-1 hat die Matrix den Rang 2

fred

Bezug
                                
Bezug
Matrizen mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 So 10.07.2016
Autor: Fjury

Und warum das? Versteh ich nicht, der Rang verändert sich doch nur, wenn eine Nullzeile oder Nullspalte entsteht?

Bezug
                                        
Bezug
Matrizen mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 So 10.07.2016
Autor: fred97

schreib die Matrix mal hin, dann solltest du sehen, dass sie nur 2 linear unabhängige Zeilen hat.

fred

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]