matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrizen
Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Projektion
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 08.06.2011
Autor: Sarah_Scholz

Aufgabe
Eine K-lineare Abbildung, [mm] \phi [/mm] heißt Projektion, falls [mm] \phi \circ \phi [/mm] = [mm] \phi [/mm] gilt. Für Teile i) und ii) sei [mm] \phi [/mm] : [mm] \IR^{2} \to \IR^{2} [/mm] eine Projektion für die (1,2) [mm] \in [/mm] Ker [mm] (\phi) [/mm] und (1,-1) [mm] \in Im(\phi). [/mm] Man berechne die Matrix [mm] M_{A}^{A} (\phi) [/mm] falls:
i) [mm] A={\vektor{1 \\ 0},\vektor{0 \\ 1}} [/mm] (Standardbasis)
ii) A= [mm] {\vektor{1 \\ 2},\vektor{1 \\ -1}} [/mm]
Seien V ein n-dimensionaler Vektorraum und p: V [mm] \to [/mm] V eine lineare Abbildung mit p [mm] \circ [/mm] p=p
iii) Zeigen Sie, dass es eine ganze Zahl k mit 0 [mm] \le [/mm] k [mm] \le [/mm] n gibt und eine Basis B von V gibt,so dass
[mm] M_{B}^{B} =\pmat{ E_{k} & 0 \\ 0 & 0 } [/mm]
wobei Ek die k [mm] \times [/mm] k Einheitsmatrix bezeichnet (d.h. [mm] M_{B}^{B} [/mm] (p) hat die Nummer 1 in den k ersten Diagonaleinträge und die Nummer 0 in allen anderen Einträge).

OK also bei dieser Aufgabe weiß ich nicht mal womit ich anfangen muss.
Ich würd sagen man liest aus der Angabe ,dass [mm] \phi [/mm] (1,2) = (0,0) und [mm] \phi [/mm] (w,v) = (1,-1) aber viel mehr seh ich da ned.  Wie berechne ich für i) und ii) die Matrix und wie sollte der Beweis in iii) aufgebaut sein?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 08.06.2011
Autor: fred97

Zu i)

Du hast $ [mm] \phi [/mm] $ (w,v) = (1,-1), also ist  [mm] \phi(1,-1)= [/mm]  $ [mm] \phi^2 [/mm] $ (w,v) =  $ [mm] \phi [/mm] $ (w,v) =(1,-1)

Weiter ist

        (1,0)= 1/3(1,2)+2/3(1,-1),

somit ist  [mm] \phi(1,0)=0*(1,2)+2/3(1,-1) [/mm]

Daher ist die erste Spalte der gesuchten Matrix:

0

2/3

FRED

Bezug
                
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Mo 13.06.2011
Autor: froggy60

hat irgendwer eine idee für teilaufgabe 3? bin vollkommen ratlos dabei grade

Bezug
                        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 13.06.2011
Autor: angela.h.b.


> hat irgendwer eine idee für teilaufgabe 3? bin vollkommen
> ratlos dabei grade

Hallo,

[willkommenmr].

Leider weiß ich nicht, was Du bisher getan und überlegt hast.
Waren Eigenwerte und Eigenvektoren schon dran bei Euch?

Wie dem auch sei: Du suchst eine Basis B mit der Eigenschaft, daß k Basisvektoren [mm] b_1,...,b_k [/mm] durch die betrachtete Abbildung auf sich selbst abgebildet werden,
und der Rest der gesuchten Basisvektoren wird auf die Null abgebildet, ist also eine Basis des Kerns.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]