matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 So 13.02.2005
Autor: Relationchip

Mein Problem ist ein Aufgabe die lautet:
Man berechnet sämliche quadratische Matrizen X mit  [mm] \pmat{ 1 & -2 \\ -2 & 4 } [/mm] X= [mm] \pmat{ -5 & -6 \\ 10 & 12 } [/mm]

Ich habe schon versucht die Inverse auszurechnen. Aber eine Inverse existiert nicht. Wie komme ich auf die Lösung und wie sieht der Rechenweg aus?

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 13.02.2005
Autor: baskolii

Tip:
Setze doch X= [mm] \pmat{ x_{11} & x_{12} \\ x_{21} & x_{22} } [/mm]
Dann erhälst du 4 Gleichungen mit 4 Unbekannten, die du dann noch lösen musst.

mfg Verena

Bezug
                
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:55 Mo 14.02.2005
Autor: Relationchip

Folgende Gleichungen habe ich raus:

1a-2b=1                               -5a-6b=1
-2a + 4b=0                           10a+12b=0

wie muss ich die Gleichungen falls sie richtig sind auflösen?


Bezug
                        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:23 Mo 14.02.2005
Autor: marthasmith

Hallo,

[mm] \pmat{ 1 & -2 \\ -2 & 4 } \pmat{ a & b \\ c & d} [/mm] = [mm] \pmat{ -5 & -6 \\ 10 & 12} [/mm]

Jetzt das Matrizenprodukt auf der linken Seite anwenden
(nimm erste Spalte (rechte Matrix), multipliziere mit erster Zeile (linke Matrix)
--> ergibt das Element links oben.
(nimm zweite Spalte (r), multipliziere mit erster Zeiel (l) --> Element r.oben
nun zweite Spalte , zweite Zeile )

[mm] \pmat{1*a - 2*c & 1*b - 2*d\\-2*a+4*c & -2*b+4d} [/mm] =  [mm] \pmat{ -5 & -6 \\ 10 & 12} [/mm]

Nun hast du vier Gleichungen, nämlich:
1. $a-2c = -5$
2. $b-2d = -6$
3. $-2a+4c=10$
4. $-2b+4d=12$

Nun hast du zwei Gleichungssystem mit je zwei Unbekannten:
1. und 3. mit a,c
2. und 4. mit b,d
Auflösen von zwei Gleichung, z.B. die erste nach a umformen und
in die dritte einsetzen --> c, dann das berechnete c in 1. -->a

Gruß

marthasmith

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]