matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLerngruppe LinAlgMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lerngruppe LinAlg" - Matrizen
Matrizen < Lerngruppe LinAlg < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Absicherung
Status: (Frage) beantwortet Status 
Datum: 16:34 Di 31.10.2006
Autor: diego

Aufgabe
Geben sie ein Beispiel für zwei Matrizen A, B mit AB [mm] \in M33(\IR) [/mm] und BA [mm] \in M22(\IR). [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo (vor allem an die neu dazu gekommenen),
bin mir eigentlich sicher ein geeignetes Beispiel gefunden zu haben, wollte aber nochmal nachfragen ob das stimmt.

A [mm] \in [/mm] M32 [mm] B\in [/mm] M23
Die Zahlen in den einzelnen Spalten kann ich dann beliebig wählen, oder?

Bitte bestätigt mir jemand das ich es verstanden habe!
Danke!

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 31.10.2006
Autor: M.Rex

Hallo

Das ist korrekt.

(ich mehme mal an, dass ihr mit [mm] M_{33}(\IR) [/mm] diejenigen [mm] 3\times3 [/mm] Matrizen mit Einträgen aus [mm] \IR [/mm] meint)

Marius

Bezug
                
Bezug
Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Di 31.10.2006
Autor: Sashman

Moin M.Rex!

Das haste genau richtig mit [mm] $M_{mn}(\mathcal{R})$ [/mm] werden im Script die [mm] $m\times [/mm] n$-Matrizen über dem kommutativen Ring [mm] \mathcal{R} [/mm] bezeichnet.

Insbesondere mit [mm] $M_{mn}(\IR)$ [/mm] die [mm] $m\times [/mm] n$-Matrizen über [mm] \IR. [/mm]

MfG
Sashman

Bezug
        
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 10.11.2006
Autor: diego

Aufgabe
Geben Sie ein Beispiel für zwei Matritzen A, B für die Rg(AB)<Rg(A) und Rg(AB)<Rg(B)

Hallo,
habe wieder die selbe Frage wie oben, nämlich ob mein Beispiel wirklich zutrifft.
      1  0
B=  0  1       A = 0 0 0
      0  1              0 1 2


AB = 0 0
        0 3

Danke schonmal






Bezug
                
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Fr 10.11.2006
Autor: ullim

Hi,

Rang(A) = 1
Rang(B) = 2

Rang(AB)=1

also sind die Ungleichungen nicht alle erfüllt.

mfg ullim

Bezug
                        
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Fr 10.11.2006
Autor: diego

Und wenn ich die spalten von B vertausche?
Dann komme ich doch auf

AB = 0 0
         3 0

Oder stimmt das auch nicht?

Nochmal zum Verständnis: Der Rang zählt doch die Anzahl der Pivot Positionen. Und ich dachte eine Pivot Position ist, wenn in [mm] a_{nn} [/mm] eine eins steht und links der Zeile und in der Spalte sonst nur Nullen sind.
Oder hab ich das falsch verstanden?

Bezug
                                
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Fr 10.11.2006
Autor: ullim

Hi,

wenn Du die Matrix auf Zeilenstufenform gebracht hast, stimmt das mit den Pivotelementen, so wie Du gesagt hast.

Für Deine Matrizen

[mm] A=\pmat{ 0 & 0 & 0 \\ 0 & 1 & 2 } [/mm]

[mm] B=\pmat{ 1 & 0 \\ 0 & 1 \\ 0 & 1 } [/mm] und

[mm] AB=\pmat{ 0 & 0 \\ 0 & 3 } [/mm]

auf Zeilenstufenform gebracht, folgt

[mm] A=\pmat{1 & 2 & 0 \\ 0 & 0 & 0 } [/mm] also ein Pivot Element, d.h. Rang(A)=1

[mm] B=\pmat{ 1 & 0 \\ 0 & 1 \\ 0 & 0 } [/mm] also zwei Pivot Element, d.h. Rang (B)=2

[mm] AB=\pmat{ 3 & 0 \\ 0 & 0 } [/mm] also ein Pivotelement, d.h. Rang(AB)=1

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lerngruppe LinAlg"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]