matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungMatrizen-Inversion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Matrizen-Inversion
Matrizen-Inversion < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen-Inversion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Mi 29.12.2004
Autor: DrOetker

Hallo!
Unter welchen Bedingungen sind zwei Matrizen A und B zueinander invers?

        
Bezug
Matrizen-Inversion: definition
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mi 29.12.2004
Autor: andreas

hi

das ist genau der fall, wenn beide matrizen quadratisch sind, das selbe format (also z.b. $n [mm] \times [/mm] n$) haben und gilt, dass

[m] AB = BA = E_n [/m],

wobei [mm] $E_n$ [/mm] die einheitsmatrix vom format $n [mm] \times [/mm] n$ bezeichnet, also

[m] E_n = \left( \begin{array}{ccccc}1 & 0 \\ 0 & 1 & 0 \\ & \ddots & \ddots & \ddots \\ & & 0 & 1 & 0 \\ & & & 0 & 1 \end{array} \right) [/m].


ich gehe davon aus, dass dir nur die definition gefehlt hat, da du keine konkreten fragen gestellt hast!


grüße
andreas

Bezug
                
Bezug
Matrizen-Inversion: kleiner Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Do 30.12.2004
Autor: Pommes

Wichtig für Inversion einer Matrix ist dabei auch noch, dass die linear unabhängig sind, da man beim Eliminationsverfahren sonst Nullzeilen erhält, wodurch sich die Matrix nicht invertieren lässt.

Bezug
                        
Bezug
Matrizen-Inversion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 31.12.2004
Autor: DrOetker

Habe ich das richtig verstanden? Wenn ich zwei quadratische Matrizen A und B multipliziere und das ERgebnis die Einheitsmatrix ist, dann sind sie invers.
Richtig???

Bezug
                                
Bezug
Matrizen-Inversion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 31.12.2004
Autor: andreas

hi

ja. genau dann sind die matrizen invers zueinander (das ist also eine eigenschaft die paare von matrizen haben).

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]