matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesMatrixnorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Matrixnorm
Matrixnorm < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixnorm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 So 29.07.2012
Autor: Mathe-Lily

Aufgabe
Gegeben sei die Matrix T [mm] \in L(\IR^{3},\IR^{3}): [/mm]
[mm] T:=\pmat{ 1 & 0 & 0 \\ 0 & -5 & 5 \\ 0 & 7 & 1 } [/mm]
Berechnen Sie die Matrixnorm von T, wenn der [mm] \IR^{3} [/mm] jeweils mit der [mm] ||*||_{2}-Norm [/mm] ausgestattet ist.

Hallo!
ich habe ein paar Probleme beim Bestimmen der Matrixnorm:
es ist ja so definiert:
[mm] ||T||_{L(\IR^{3},\IR^{3})} [/mm] = ||T|| := [mm] sup_{x \in \IR^{3} ohne 0} \bruch{||Tx||_{\IR^{3}}}{||x||_{\IR^{3}}} [/mm]

Ist das dann mit der 2-Norm so:
||T|| := [mm] sup_{x \in \IR^{3} ohne 0} \bruch{||Tx||_{2}}{||x||_{2}} [/mm]    ?

Und mit der 2-Norm ausgerechnet sieht das dann ja so aus:
||T|| := [mm] sup_{x \in \IR^{3} ohne 0} \bruch{\wurzel{|x_{1}|^{2}+|-5x_{2}+5x_{3}|^{2}+|7x_{2}+x_{3}|^{2}}}{\wurzel{|x_{1}|^{2}+|x_{2}|^{2}+|x_{3}|^{2}}} [/mm]

oder?

Aber wie berechne ich dann das sup?

Oder bin ich total auf dem Holzweg?

Grüßle, Lily

        
Bezug
Matrixnorm: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 So 29.07.2012
Autor: wieschoo


> Gegeben sei die Matrix T [mm]\in L(\IR^{3},\IR^{3}):[/mm]
>  [mm]T:=\pmat{ 1 & 0 & 0 \\ 0 & -5 & 5 \\ 0 & 7 & 1 }[/mm]
>  
> Berechnen Sie die Matrixnorm von T, wenn der [mm]\IR^{3}[/mm]
> jeweils mit der [mm]||*||_{2}-Norm[/mm] ausgestattet ist.
>  Hallo!
>  ich habe ein paar Probleme beim Bestimmen der Matrixnorm:
>  es ist ja so definiert:
>  [mm]||T||_{L(\IR^{3},\IR^{3})}[/mm] = ||T|| := [mm]sup_{x \in \IR^{3} ohne 0} \bruch{||Tx||_{\IR^{3}}}{||x||_{\IR^{3}}}[/mm]
>  
> Ist das dann mit der 2-Norm so:
>  ||T|| := [mm]sup_{x \in \IR^{3} ohne 0} \bruch{||Tx||_{2}}{||x||_{2}}[/mm]

Das ist ein guter Anfang. Man kann zeigen, dass

[mm]\Vert A\Vert_2 =\sup_{x\in\IR^n\setminus\{0\}}\frac{\Vert Ax\Vert_2}{\Vert x\Vert_2}=\sqrt{\lambda_{\max}(A^TA)}[/mm]

für zu den euklidischen Normen zugehörigen Matrixnormen gilt. (Ja schlechter Satzbau).

Hierbei ist [mm] $\lambda_{\max}(A^TA)$ [/mm] der bertragsgrößte Eigenwert von von $A^TA$.

>    ?
>  
> Und mit der 2-Norm ausgerechnet sieht das dann ja so aus:
>  ||T|| := [mm]sup_{x \in \IR^{3} ohne 0} \bruch{\wurzel{|x_{1}|^{2}+|-5x_{2}+5x_{3}|^{2}+|7x_{2}+x_{3}|^{2}}}{\wurzel{|x_{1}|^{2}+|x_{2}|^{2}+|x_{3}|^{2}}}[/mm]
>  
> oder?
>  
> Aber wie berechne ich dann das sup?
>  
> Oder bin ich total auf dem Holzweg?

Du bist richtig gelaufen und dann falsch abgebogen.

>  
> Grüßle, Lily

Grüße zurück



Bezug
                
Bezug
Matrixnorm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Mo 30.07.2012
Autor: Mathe-Lily

Ah, danke! Hab das gerade auch von einer Kommilitonin erklärt bekommen :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]