matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrixmultiplikation assoziati
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Matrixmultiplikation assoziati
Matrixmultiplikation assoziati < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixmultiplikation assoziati: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 20.01.2009
Autor: Pille456

Hi!

Zur Übung wollte ich mal die Assoziativität der Matrizenmultiplikation beweisen. Das das so ist, ist mir klar, da Matrizmultiplikation auf die "normale" Addition und Multiplikation zurückzuführen ist.
Nun bin ich etwas schreibfaul und möchte nicht 3 n [mm] \times [/mm] n Matrizen aufstellen und das alles ausrechnen - das müsste doch auch einfacher gehen.
Mein Ansatz dafür sieht so aus:

Jede Matrix kann auch eine lineare Abbildung repräsentieren, also z.B. folgendes:
[mm] \pmat{ 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 } [/mm] = [mm] _{B}[f]_{B} [/mm] mit f als lineare Abbildung und B beliebiger Basen des Bildes von f bzw. des Urbildes. (nennt man so die Variable die ich in eine Funktion/Abbildung "hineinpacke"?)
Nun würde es doch reichen zu Beweisen, dass die Verknüpfung von drei linearen Abbildungen assoziativ ist oder?
Also sowas:
f: [mm] \IR^{n} \to \IR^{n}, [/mm] g: [mm] \IR^{n} \to \IR^{n}, [/mm] h: [mm] \IR^{n} \to \IR^{n} [/mm]
((f [mm] \circ [/mm] g) [mm] \circ [/mm] h) (x) = (f(g) [mm] \circ [/mm] h)(x) = f(g(h(x)))
(f  [mm] \circ [/mm] (g [mm] \circ [/mm] h)) (x) = (f [mm] \circ [/mm] g(h))(x) = f(g(h(x))) [mm] \Rightarrow [/mm] die Komposition von Abbildungen sind assoziativ [mm] \Rightarrow [/mm] Matrixmultiplikation ist assoziativ

        
Bezug
Matrixmultiplikation assoziati: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Di 20.01.2009
Autor: kuemmelsche


> Hi!

Hallo,

> Zur Übung wollte ich mal die Assoziativität der
> Matrizenmultiplikation beweisen. Das das so ist, ist mir
> klar, da Matrizmultiplikation auf die "normale" Addition
> und Multiplikation zurückzuführen ist.
>  Nun bin ich etwas schreibfaul und möchte nicht 3 n [mm]\times[/mm]
> n Matrizen aufstellen und das alles ausrechnen - das müsste
> doch auch einfacher gehen.
>  Mein Ansatz dafür sieht so aus:
>  
> Jede Matrix kann auch eine lineare Abbildung
> repräsentieren.

Ja, als darstellende Matrix der linearen Abbildung.

>  Nun würde es doch reichen zu Beweisen, dass die
> Verknüpfung von drei linearen Abbildungen assoziativ ist
> oder?

Genau!

>  Also sowas:
>  f: [mm]V \to W,[/mm] g: [mm]W \to X,[/mm] h: [mm]X \to Z[/mm]

[mm] \forall [/mm] V, W, X, Z Vektorräume

> ((f [mm]\circ[/mm] g) [mm]\circ[/mm] h) (x) = (f(g) [mm]\circ[/mm] h)(x) = f(g(h(x)))
>  (f  [mm]\circ[/mm] (g [mm]\circ[/mm] h)) (x) = (f [mm]\circ[/mm] g(h))(x) =
> f(g(h(x)))

Ich denke den [mm] \IR^n [/mm] alleine zu betrachten ist nicht allgemein genug, aber das weiß ich nicht genau, da ja der [mm] \IR^n [/mm] eine Art "Prototyp" eines n dimensionalen Vektorraums darstellt (also ein Isomorphismus existiert).

Ich würde auch nicht so eine Art "w.A."-Beweis machen.

Ich denke ((f [mm]\circ[/mm] g) [mm]\circ[/mm] h) (x) = (f(g) [mm]\circ[/mm] h)(x) = f(g(h(x)))=(f [mm]\circ[/mm] g(h))(x)=(f  [mm]\circ[/mm] (g [mm]\circ[/mm] h)) (x) ist ein wenig besser formuliert.

lg Kai


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]