matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesMatrixexponential berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Matrixexponential berechnen
Matrixexponential berechnen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixexponential berechnen: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 11:40 Di 05.07.2016
Autor: Ardbeg

Aufgabe
Zeigen Sie, dass für Matrizen A und B mit AB=BA schon [mm] e^{A+B}=e^{A}*e^{B} [/mm] gilt.
Ist die Bedingung AB=BA notwendig (Gegenbeispiel oder Beweis für allgemeinen
Fall)?

Sei J eine Matrix in Jordanscher Normalform. Berechnen Sie
[mm] e^{J} [/mm] (Tipp: zunächst [mm] e^{J_{i}}). [/mm]

Sei A eine beliebige n×n-Matrix, äquivalent zur Matrix J aus obigen Aufgabenteil,
d.h. [mm] QAQ^{-1}=J [/mm] für geeignetes [mm] Q\in\IC^{nxn}. [/mm] Bestimmen Sie [mm] e^{A}. [/mm]

Hallo!

Ich habe zu dieser Aufgabe noch eine Frage, da ich mir bezüglich des Lösungsansatzes unsicher bin. Den ersten Aufgabenteil habe ich gelöst, dass war soweit kein Problem. Meine Schwierigkeit liegt im zweiten und somit auch im dritten.
Um [mm] e^{J} [/mm] zu berechnen wollte ich so vorgehen:

[mm] e^{t*J}=exp(t*\pmat{ J_{1} & \\ & \ddots \\ & & J_{n}})=exp(t*\pmat{\lambda_{1} & 1 & \\ & \ddots & \\ & & \lambda_{n} & 1}). [/mm]

Leider weiß ich hier schon nicht weiter, denn eine explizite Lösung kann ich mir so ja nicht konstruieren. Oder übersehe ich da was? Ist mein Ansatz falsch?

Danke für die Hilfe.

Gruß
Ardbeg

        
Bezug
Matrixexponential berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Di 05.07.2016
Autor: fred97

Schau mal da rein:

http://www.mathe.tu-freiberg.de/~wegert/Lehre/DynSys/Jordan.pdf

FRED

Bezug
                
Bezug
Matrixexponential berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mi 06.07.2016
Autor: Ardbeg

Danke für den Link, er hat mir geholfen, wenn ich auch nicht sicher bin, ob ich dem Ergebnis nähergekommen bin. Ich führe mal meine Gedanken aus.

[mm] e^{J}=exp(t*\pmat{ J_{1} & & \\ & \ddots & \\ & & J_{n} })=\pmat{e^{J_{1}} & & \\ & \ddots & \\ & & e^{J_{n}} } [/mm]

Es gilt: [mm] J_{i}=\lambda_{i}*E_{i}+N_{i} [/mm] ; wobei [mm] E_{i} [/mm] die Einheitsmatrizen sind, [mm] N_{i}, [/mm] die Nebendiagonale, die mit Einsen besetzt ist. Dabei ist [mm] N_{i} [/mm] eine nilpotente Matrix.

[mm] e^{J_{i}}=e^{\lambda_{i}*E_{i}+N_{i}}=e^{\lambda_{i}*E_{i}}*e^{N_{i}} [/mm]

da [mm] (\lambda_{i}*E_{i})*N_{i}=N_{i}*(\lambda_{i}*E_{i}) [/mm]

[mm] \Rightarrow e^{J}=e^{\lambda_{i}*E_{i}}*\pmat{1 & \bruch{t^{1}}{1!} & \bruch{t^{2}}{2!} & \cdots & \bruch{t^{n-1}}{(n-1)!} \\ 0 & \ddots & \ddots & \cdots & \bruch{t^{n-2}}{(n-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & \bruch{t^{1}}{1!} \\ 0 & \cdots & \cdots & 0 & 1} [/mm]

Das dürfte doch soweit stimmen, oder?

Gruß
Ardbeg

Bezug
                        
Bezug
Matrixexponential berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 06.07.2016
Autor: fred97


> Danke für den Link, er hat mir geholfen, wenn ich auch
> nicht sicher bin, ob ich dem Ergebnis nähergekommen bin.
> Ich führe mal meine Gedanken aus.
>
> [mm]e^{J}=exp(t*\pmat{ J_{1} & & \\ & \ddots & \\ & & J_{n} })=\pmat{e^{J_{1}} & & \\ & \ddots & \\ & & e^{J_{n}} }[/mm]
>  
> Es gilt: [mm]J_{i}=\lambda_{i}*E_{i}+N_{i}[/mm] ; wobei [mm]E_{i}[/mm] die
> Einheitsmatrizen sind, [mm]N_{i},[/mm] die Nebendiagonale, die mit
> Einsen besetzt ist. Dabei ist [mm]N_{i}[/mm] eine nilpotente Matrix.
>
> [mm]e^{J_{i}}=e^{\lambda_{i}*E_{i}+N_{i}}=e^{\lambda_{i}*E_{i}}*e^{N_{i}}[/mm]
>  
> da [mm](\lambda_{i}*E_{i})*N_{i}=N_{i}*(\lambda_{i}*E_{i})[/mm]
>  
> [mm]\Rightarrow e^{J}=e^{\lambda_{i}*E_{i}}*\pmat{1 & \bruch{t^{1}}{1!} & \bruch{t^{2}}{2!} & \cdots & \bruch{t^{n-1}}{(n-1)!} \\ 0 & \ddots & \ddots & \cdots & \bruch{t^{n-2}}{(n-2)!} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & \bruch{t^{1}}{1!} \\ 0 & \cdots & \cdots & 0 & 1}[/mm]
>  
> Das dürfte doch soweit stimmen, oder?

Ja, stimmt.

FRED

>  
> Gruß
>  Ardbeg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]