Matrixdarstellung Lineare Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:20 So 16.03.2014 | Autor: | dodo1924 |
Aufgabe | Sei A := [mm] \pmat{ 2 & 5 & -3 \\ 1 & -4 & 7}. [/mm] Durch A ist eine Abbildung F: [mm] \IR^3 [/mm] --> [mm] \IR^2 [/mm] mit F(v) = A*v mit v [mm] \in \IR^3 [/mm] bestimmt.
I) Zeige: Die Matrixdarstellung von F bezüglich der kanonischen Basis ist A.
II) Wie lautet die Matrixdarstellung bezüglich folgender Basen?
[mm] \beta [/mm] := {(1,1,1),(1,1,0),(1,0,0)}; [mm] \gamma [/mm] := {(1,3),(2,5)} |
Hi!
Bei Aufgabe 1 muss ich ja erstmals die Bilder der Basisvektoren ausrechnen, welche die Spaltenvektoren der Matrix A darstellen, also [mm] f(e_1) [/mm] = (2,1); [mm] f(e_2) [/mm] = (5,-4); [mm] f(e_3) [/mm] = (-3,7)
Wie kann ich sie nun als LK der Basisvektoren hinschreiben?
Mit (2,1) = [mm] a_1 [/mm] * [mm] e_1 [/mm] + [mm] a_2 [/mm] * [mm] e_2 [/mm] + [mm] a_3 [/mm] * [mm] e_3 [/mm] würde ich ja einen Vektor aus dem [mm] \IR^3 [/mm] als Lösung bekommen, oder?
Wie schreibe ich hier die LK richtig an?
Und bei Aufgabe 2 wäre mein Ansatz folgender:
Die Bilder der Basis [mm] \beta [/mm] ausrechnen und dann als LK der Basisvektoren aus [mm] \gamma [/mm] darstellen, also
f(1,1,1) = (4,4)
[mm] \pmat{ 4 \\ 4} [/mm] --> Mit Gaus-Algorithmus gelößt --> [mm] \pmat{ 1 & 2 & 4 \\ 3 & 5 & 4} [/mm]
wobei [mm] \pmat{ 1 \\ 3} [/mm] und [mm] \pmat{ 2 \\ 5} [/mm] die Basisvektoren von [mm] \gamma [/mm] sind!
Die Abbildungsmatrix wäre dann nach meiner Lösung:
[mm] [F]_\beta ^\gamma [/mm] = [mm] \pmat{ -12 & -41 & -8 \\ 8 & 24 & 5 }
[/mm]
Korrekt??
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:25 Mo 17.03.2014 | Autor: | fred97 |
> Sei A := [mm]\pmat{ 2 & 5 & -3 \\ 1 & -4 & 7}.[/mm] Durch A ist eine
> Abbildung F: [mm]\IR^3[/mm] --> [mm]\IR^2[/mm] mit F(v) = A*v mit v [mm]\in \IR^3[/mm]
> bestimmt.
>
> I) Zeige: Die Matrixdarstellung von F bezüglich der
> kanonischen Basis ist A.
Lautet das nicht so: "Die Matrixdarstellung von F bezüglich der kanonischen Basen des [mm] \IR^3 [/mm] und des [mm] \IR^2 [/mm] ist A."
> II) Wie lautet die Matrixdarstellung bezüglich folgender
> Basen?
> [mm]\beta[/mm] := {(1,1,1),(1,1,0),(1,0,0)}; [mm]\gamma[/mm] :=
> {(1,3),(2,5)}
> Hi!
>
> Bei Aufgabe 1 muss ich ja erstmals die Bilder der
> Basisvektoren ausrechnen, welche die Spaltenvektoren der
> Matrix A darstellen, also [mm]f(e_1)[/mm] = (2,1); [mm]f(e_2)[/mm] = (5,-4);
> [mm]f(e_3)[/mm] = (-3,7)
>
> Wie kann ich sie nun als LK der Basisvektoren
> hinschreiben?
> Mit (2,1) = [mm]a_1[/mm] * [mm]e_1[/mm] + [mm]a_2[/mm] * [mm]e_2[/mm] + [mm]a_3[/mm] * [mm]e_3[/mm] würde ich
> ja einen Vektor aus dem [mm]\IR^3[/mm] als Lösung bekommen, oder?
Unsinn !!
> Wie schreibe ich hier die LK richtig an?
Sei [mm] \{b_1,b_2\} [/mm] die kanonische Basis des [mm] \IR^2. [/mm] Dann ist
[mm] $(2,1)=2*b_1+1*b_2$
[/mm]
>
> Und bei Aufgabe 2 wäre mein Ansatz folgender:
> Die Bilder der Basis [mm]\beta[/mm] ausrechnen und dann als LK der
> Basisvektoren aus [mm]\gamma[/mm] darstellen, also
> f(1,1,1) = (4,4)
> [mm]\pmat{ 4 \\ 4}[/mm] --> Mit Gaus-Algorithmus gelößt --> [mm]\pmat{ 1 & 2 & 4 \\ 3 & 5 & 4}[/mm]
> wobei [mm]\pmat{ 1 \\ 3}[/mm] und [mm]\pmat{ 2 \\ 5}[/mm] die Basisvektoren
> von [mm]\gamma[/mm] sind!
>
> Die Abbildungsmatrix wäre dann nach meiner Lösung:
> [mm][F]_\beta ^\gamma[/mm] = [mm]\pmat{ -12 & -41 & -8 \\ 8 & 24 & 5 }[/mm]
>
> Korrekt??
Ja
FRED
>
> lg
>
|
|
|
|