matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix zur lin. Abb., Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrix zur lin. Abb., Basis
Matrix zur lin. Abb., Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix zur lin. Abb., Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Di 09.03.2010
Autor: ChopSuey

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Durch die Matrix $\ A = \pmat{ 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 } $

sei die lineare Abbildung $\ f : \IR^3 \to  \IR^3 $ mit $\ f(x) = Ax $ definiert.

Bestimmen Sie eine Basis von $\  Im\  f }$

Hallo,

die Spalten $\ s_1, ...,s_n$ der Matrix $\ A $ erzeugen doch den Untervektorraum $\ Im \ f $.

Somit ist $\ Im \ f = span(s_1,...,s_n) $

Nun habe ich mittels Gauß-Jordan-Algorithmus versucht die Basis des von $\ Im \ f$ zu ermitteln ...

$\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 } $

$\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 } $

$\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 } $

Also sind die Vektoren $\ \vektor{1 \\ 2 \\ -1}, \ \vektor{0 \\ 1 \\ 1}, \ \vektor{0 \\ 0 \\ 2} $ eine Basis von $\ Im \ f $.

Nur leider stimmt das Ergebnis nicht.
Was hab' ich falsch gemacht?

Freue mich über Antworten.
Grüße
ChopSuey

        
Bezug
Matrix zur lin. Abb., Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Di 09.03.2010
Autor: fred97


> Durch die Matrix [mm]\ A = \pmat{ 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 }[/mm]
>  
> sei die lineare Abbildung [mm]\ f : \IR^3 \to \IR^3[/mm] mit [mm]\ f(x) = Ax[/mm]
> definiert.
>  
> Bestimmen Sie eine Basis von [mm]\ Im\ f }[/mm]
>  Hallo,
>  
> die Spalten [mm]\ s_1, ...,s_n[/mm] der Matrix [mm]\ A[/mm] erzeugen doch den
> Untervektorraum [mm]\ Im \ f [/mm].
>  
> Somit ist [mm]\ Im \ f = span(s_1,...,s_n)[/mm]
>  
> Nun habe ich mittels Gauß-Jordan-Algorithmus versucht die
> Basis des von [mm]\ Im \ f[/mm] zu ermitteln ...
>  
> [mm]\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 }[/mm]
>  
> [mm]\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 }[/mm]

Das letzte stimmt nicht. Richtig:

[mm]\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 }[/mm]

FRED


>  
> [mm]\ \vmat{ 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 }[/mm]
>  
> Also sind die Vektoren [mm]\ \vektor{1 \\ 2 \\ -1}, \ \vektor{0 \\ 1 \\ 1}, \ \vektor{1 \\ 1 \\ -2}[/mm]
> eine Basis von [mm]\ Im \ f [/mm].
>  
> Nur leider stimmt das Ergebnis nicht.
>  Was hab' ich falsch gemacht?
>  
> Freue mich über Antworten.
>  Grüße
>  ChopSuey


Bezug
                
Bezug
Matrix zur lin. Abb., Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Di 09.03.2010
Autor: ChopSuey

Hallo Fred,

blöder Fehler ;-) Danke fürs Helfen.

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]