matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix von Linearen Operatoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Matrix von Linearen Operatoren
Matrix von Linearen Operatoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix von Linearen Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Mo 14.02.2005
Autor: fridolin

Hallo Ihr!

Neues Thema, neues Glück ... und die Klausur naht (verzeiht deshalb die fehlenden Ansätze, aber so langsam platzt das Hirn) ... ;-)
Wie rechnet man sowas
[Dateianhang nicht öffentlich]
am besten aus?

Liebe Grüße und Danke für Eure Hilfe,
frido

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Matrix von Linearen Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mo 14.02.2005
Autor: baskolii

hi Frido!

Hab das ganze nochmal durchgerechnet und bin jetzt doch auf ne Lösung gekommen.

[mm] u_1=(b_1 b_2 b_3)\vektor{2 \\ 3 \\ 5} [/mm]
[mm] u_2=(b_1 b_2 b_3)\vektor{0 \\ 1 \\ 2} [/mm]
[mm] u_3=(b_1 b_2 b_3)\vektor{1 \\ 0 \\ 0} [/mm]

[mm] v_1=(b_1 b_2 b_3)\vektor{1 \\ 1 \\ 1} [/mm]
[mm] v_2=(b_1 b_2 b_3)\vektor{1 \\ 1 \\ -1} [/mm]
[mm] v_3=(b_1 b_2 b_3)\vektor{2 \\ 1 \\ 2} [/mm]

Gesucht ist A, so dass [mm] Au_i=v_i. [/mm]
Statt diesem A berechne ich [mm] D=A(b_1 b_2 b_3). [/mm]
Es muss also gelten:
[mm] D\vektor{2 \\ 3 \\ 5}=\vektor{1 \\ 1 \\ 1} [/mm]
[mm] D\vektor{0 \\ 1 \\ 2}=\vektor{1 \\ 1 \\ -1} [/mm]
[mm] D\vektor{1 \\ 0 \\ 0}=\vektor{2 \\ 1 \\ 2} [/mm]

Man sieht sofort, dass die 1. Spalte von D  [mm] \vektor{2 \\ 1 \\ 2} [/mm] sein muss.
Also D= [mm] \pmat{ 2 & d_{12} & d_{13} \\ 1 & d_{22} & d_{23} \\ 2 & d_{32} & d_{33} } [/mm]

Die restlichen Einträge von D muss man mit den restlichen beiden Bedingungen berechnen.

Dann hat man: D= [mm] \pmat{ 2 & -3 & 2\\ 1 & -3 & 2 \\ 2 & -1 & 0 } [/mm]
Dann ist also [mm] A=D(b_1 b_2 b_3)^{-1} [/mm]
[mm] (b_1 b_2 b_3)^{-1} [/mm] existiert, da [mm] (b_1, b_2, b_3) [/mm] Basis (also lin. unabhängig)

mfg Verena




Bezug
                
Bezug
Matrix von Linearen Operatoren: Danke!!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Di 15.02.2005
Autor: fridolin

Hallo Verena,
Dir sei ganz herzlich gedankt!
Die Klausur ist inzwischen über-(und hoffentlich auch be-)standen ....
:-)
Auf zur nächsten ... Der Analysis-Prof. wartet schon ;-)

Liebe Grüße,
frido


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]