matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix und UVR
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrix und UVR
Matrix und UVR < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix und UVR: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 28.01.2013
Autor: ohlala

Aufgabe
Sei [mm] V [mm] \subset R^4[/mm]  [mm] der von [mm] [mm] v_1= \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix} [/mm] und [mm] v_2= \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}[/mm]  [mm] aufgespannte Untervektorraum.
Finden Sie eine Matrix [mm] A [mm] \in R^{2x4}[/mm]  [mm], so dass V der Lösungsraum des homogenen linearen Gleichungssystem Ax=0 ist.

Hallo zusammen,

leider habe ich bei dieser Aufgabe überhaupt keine Ahnung wie man anfangen soll oder kann.

Muss ich [mm] [mm] v_1 [/mm] und [mm] v_2[/mm]  [mm] als Matrix schreiben und dann elementare Zeilenumformungen machen oder so???

Wäre echt super, wenn mir jemand eine Idee oder "Anleitung" schreiben könnte, lösen würde ich es ansonsten nämlich gerne selber.

GLG ohlala

        
Bezug
Matrix und UVR: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mo 28.01.2013
Autor: Schadowmaster

moin,

Die Idee, deren Richtigkeit du natürlich noch begründen/beweisen müsstest, ist folgende:
Schreibe [mm] $v_1, v_2$ [/mm] in eine Matrix $X$.
Dann ist $A [mm] \in \IR^{2\times 4}$ [/mm] gesucht mit $AX = 0$.
Wir können dies transponieren und erhalten das äquivalente Gleichungssystem
[mm] $X^{T}A^{T} [/mm] = 0$.
Nun ist $X$ bekannt, also haben wir hier ein klassisches Gleichungssystem und können $A$ bestimmen; die Zeilen von $A$ (was ja den Spalten von [mm] $A^{T}$ [/mm] entspricht) können als Basis des obigen Lösungsraums gewählt werden.

Wenn du das so machst, erhältst du eine Matrix $A$ mit $Av = 0$ für alle $v [mm] \in [/mm] V$.
Du müsstest dann allerdings noch beweisen, dass $Aw [mm] \neq [/mm] 0$ für alle $w [mm] \not\in [/mm] V$, da steckt noch ein wenig Arbeit und ein paar Dimensionsargumente drin.


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]