matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix mit Unbekannte invertie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Matrix mit Unbekannte invertie
Matrix mit Unbekannte invertie < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix mit Unbekannte invertie: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:37 So 18.02.2007
Autor: hans_hubert

Aufgabe
Berechnen Sie die Inverse der Matrix

[mm] \pmat{ i & 0 & 2 \\ 2 & i & 1 \\ 1 & 0 & i } [/mm]


Hallo,

kann mir bitte jemand sagen, wie man diese Matrix invertiert?
Mit dem Recorder-Verfahren, das wir gelernt haben, muss man die Matrix ja in die Einheitsmatrix umwandeln. Aber wie macht man das, wenn da überall i's stehen?

Gruß

Hans

        
Bezug
Matrix mit Unbekannte invertie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 18.02.2007
Autor: Bastiane

Hallo hans_hubert!

> Berechnen Sie die Inverse der Matrix
>  
> [mm]\pmat{ i & 0 & 2 \\ 2 & i & 1 \\ 1 & 0 & i }[/mm]
>  
>
> Hallo,
>  
> kann mir bitte jemand sagen, wie man diese Matrix
> invertiert?
>  Mit dem Recorder-Verfahren, das wir gelernt haben, muss
> man die Matrix ja in die Einheitsmatrix umwandeln. Aber wie
> macht man das, wenn da überall i's stehen?

Das kannst du genauso machen, als würden da überall Zahlen stehen. Behandel das i einfach als Konstante - wenn es die imaginäre Einheit ist, ist es ja auch nichts anderes. Wenn du willst, kannst du ja stattdessen auch [mm] \wurzel{-1} [/mm] hinschreiben.
Probier's doch mal. Und wenn du keinen Ansatz hast, könntest du mal ein Beispiel für dieses Verfahren geben, den Namen habe ich noch nie gehört.

Ansonsten kannst du die Matrix auch mit Gauß auf die Zeilenstufenform bringen, oder - ganz umständlich, eine [mm] $3\times [/mm] 3$-Matrix dranmultiplizieren, und das Ergebnis muss dann die Einheitsmatrix sein.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Matrix mit Unbekannte invertie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 18.02.2007
Autor: hans_hubert

Hallo und danke!

Ich meinte das Verfahren, bei dem man die Matrix in die Einheitsmatrix umwandelt und parallel alle Umformungen an der Einheitsmatrix durchführt, aus der dann die Inverse entsteht.
Ich komme jetzt auch weiter, als vorher:

[mm] \pmat{ 1 & 0 & \bruch{2}{x} \\ 0 & 1 & \bruch{x-2}{x^2} \\ 0 & 0 & \bruch{x^2 -2}{x} } [/mm]

Aber jetzt weiß ich nicht, wie ich das weiter in Richtung Einheitsmatrix umformen kann

Bezug
                        
Bezug
Matrix mit Unbekannte invertie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 18.02.2007
Autor: Bastiane

Hallo hans_hubert!

> Ich meinte das Verfahren, bei dem man die Matrix in die
> Einheitsmatrix umwandelt und parallel alle Umformungen an
> der Einheitsmatrix durchführt, aus der dann die Inverse
> entsteht.
>  Ich komme jetzt auch weiter, als vorher:
>  
> [mm]\pmat{ 1 & 0 & \bruch{2}{x} \\ 0 & 1 & \bruch{x-2}{x^2} \\ 0 & 0 & \bruch{x^2 -2}{x} }[/mm]

Nanu - da ist ja gar kein i mehr? Und wo kommt das x her? Oder hast du das i durch das x ersetzt? [kopfkratz]
  

> Aber jetzt weiß ich nicht, wie ich das weiter in Richtung
> Einheitsmatrix umformen kann

Habe deine Rechnung bis oben jetzt nicht nachgeprüft, aber wenn es soweit richtig ist, kannst du jetzt die dritte Zeile durch [mm] \frac{x^2-2}{x} [/mm] teilen (natürlich nur, wenn dieser Wert [mm] \not=0 [/mm] ist). Dann hast du in der letzten Zeile auch nur noch eine 1 stehen. Und dann rechnest du die zweite Zeile minus [mm] \frac{x-2}{x^2} [/mm] mal die dritte Zeile, dann hast du in der zweiten Zeile nur noch die 1 in der Mitte stehen, und mit der ersten Zeile machst du das Gleiche. Schaffst du das? Kannst deine Schritte auch gerne noch posten.

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Matrix mit Unbekannte invertie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 So 18.02.2007
Autor: hans_hubert

alles klar, vielen dank!
hm, da hätte ich ja auch selbst drauf kommen können..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]