matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix invertieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrix invertieren
Matrix invertieren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix invertieren: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:40 Mi 14.01.2015
Autor: RudiRabenkopf

Aufgabe
Für welche a,b ist die folgende Matrix invertierbar ?

A= [mm] \pmat{ a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a } [/mm]


Hallo,

kann mir wer helfen, wie ich auf die Lösung komme?

Meine Ansätze:

- Damit eine Matrix invertierbar ist, muss die Determinate ungleich 0 sein.

- Es scheint eine untere Dreiecksmatrix zu sein, also muss man nur die Hauptdiagonale multiplizieren und erhält die Determinante....in diesem Fall hätte man immer detA [mm] \not= [/mm] 0 , wenn [mm] a\not=0 [/mm]   , oder ? b kann in diesem Fall beliebig gewählt werden.

- Keine Zeile oder Spalte ist ein Vielfaches von einer anderen...also kann von dadurch auch kein detA=0 entstehen...



EDIT: !!!

Habe eben erst gesehen, dass es ja eine 4x4 Matrix ist....
Das heißt, dass ich die Determinante erstmal ausrechen muss indem ich nach einer Zeile oder Spalte entwickeln muss.

Ich wähle das erste Element, da alle anderen = 0 sind.

detA = a * [mm] \vmat{ a & b & 0 \\ 0 & a & b \\ 0 & 0 & a } [/mm]


Allerdings habe ich nun ja wieder eine untere Dreiecksmatrix und a muss [mm] \not= [/mm] 0 sein ?!?!?

Allein weil der Faktor (a) garnicht 0 sein darf.....



Wäre nett wenn ihr mir auf die Sprünge helfen könntet.


Gruß Rudi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrix invertieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Mi 14.01.2015
Autor: fred97


> Für welche a,b ist die folgende Matrix invertierbar ?
>  
> A= [mm]\pmat{ a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a }[/mm]
>  
> Hallo,
>  
> kann mir wer helfen, wie ich auf die Lösung komme?
>  
> Meine Ansätze:
>  
> - Damit eine Matrix invertierbar ist, muss die Determinate
> ungleich 0 sein.

Ja


>  
> - Es scheint eine untere Dreiecksmatrix zu sein,

es scheint nicht nur so, es ist so !


> also muss
> man nur die Hauptdiagonale multiplizieren und erhält die
> Determinante....in diesem Fall hätte man immer detA [mm]\not=[/mm]
> 0 , wenn [mm]a\not=0[/mm]   , oder ?


Ja, genau



>  b kann in diesem Fall beliebig
> gewählt werden.

Ja.


>  
> - Keine Zeile oder Spalte ist ein Vielfaches von einer
> anderen...also kann von dadurch auch kein detA=0
> entstehen...

So ist es im Falle a [mm] \ne [/mm] 0.


>  
>
>
> EDIT: !!!
>  
> Habe eben erst gesehen, dass es ja eine 4x4 Matrix ist....

Na und ?


>  Das heißt, dass ich die Determinante erstmal ausrechen
> muss indem ich nach einer Zeile oder Spalte entwickeln
> muss.

Ja, aber Du hast doch schon oben gesagt: [mm] det(A)=a^4. [/mm]

FRED

>  
> Ich wähle das erste Element, da alle anderen = 0 sind.
>  
> detA = a * [mm]\vmat{ a & b & 0 \\ 0 & a & b \\ 0 & 0 & a }[/mm]
>  
>
> Allerdings habe ich nun ja wieder eine untere
> Dreiecksmatrix und a muss [mm]\not=[/mm] 0 sein ?!?!?
>  
> Allein weil der Faktor (a) garnicht 0 sein darf.....
>  
>
>
> Wäre nett wenn ihr mir auf die Sprünge helfen könntet.
>  
>
> Gruß Rudi
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Matrix invertieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Mi 14.01.2015
Autor: RudiRabenkopf

Dann bin ich beruhigt. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]