matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMatrix entschlüsseln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Matrix entschlüsseln
Matrix entschlüsseln < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix entschlüsseln: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:16 Do 26.03.2009
Autor: imbroken603

Aufgabe
Entschlüsseln Sie folgende Matrix:
A = [mm] \pmat{ 0 & 2 & 0 & 4 & 2 & 2 & 0 \\ 0 & 1 & 0 & 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & 1 \\ 1 & -3 & 0 & 1 & 0 & 2 & 0 } [/mm]

1) wenn ich die Gleichungen II - 0,5 I
                   III - I
                   IV - I
                   2V + 3I   mache ,dann seh ich,dass rg(A) = 4 ist.
hier neues A= A = [mm] \pmat{ 0 & 2 & 0 & 4 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -2 & -1 & 0 \\ 0 & 0 & 0 & -3 & -2 & -1 & 0 \\ 2 & 0 & 0 & 14 & 6 & 10 & 0 } [/mm]
aber rg(A) [mm] \not= [/mm] r ,also den einheitsvektoren. r= 3. wenn ich nun entschlüsseln möchte,dann muss ich hingehen und versuchen noch eine Einheitsmatrix zu bekommen? ist das richtig so?

wenn ich hingehe und dann VON DER ANFANGSMATRIX aus I- 2II mache, dann wird aber meine 1.Zeile komplett 0 und ich habe dann zwar 4 Einheitsmatrizen,aber dann eine komplette Zeile 0.
das wäre dann:
A = [mm] \pmat{ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & 1 \\ 1 & -3 & 0 & 1 & 0 & 2 & 0 } [/mm]
ist das richtig so??? das simmt sicherlich nicht,oder?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Fr 27.03.2009
Autor: imbroken603

kann mir denn wirklich niemand weiterhelfen??

Bezug
                
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Fr 27.03.2009
Autor: pelzig

Was soll denn "entschlüsseln" bedeuten?

Gruß, Robert

Bezug
                        
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Fr 27.03.2009
Autor: imbroken603

Definition: "Eine Matrix A mit rg(A) = r heißt entschlüsselt,wenn sich unter den Spaltenvektoren von A genau r verschiedene Einheitsvektoren befinden."

aber wenn mir niemand weiterhelfen kann,ist es ja auch nicht schlimm;)

Bezug
                                
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Fr 27.03.2009
Autor: pelzig

Das kenne ich nur als Zeilenstufenform, und das wird mit dem Gauß-Algorithmus gemacht. Woher hast du denn diesen Namen?

Gruß, Robert

Bezug
                                        
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Fr 27.03.2009
Autor: angela.h.b.


>  Woher hast du denn diesen
> Namen?

Hallo,

ich denke, hier haben die WiWis []Luftballons aufgepustet.

Gruß v. Angela





Bezug
        
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Fr 27.03.2009
Autor: angela.h.b.


> Entschlüsseln Sie folgende Matrix:
>  A = [mm]\pmat{ 0 & 2 & 0 & 4 & 2 & 2 & 0 \\ 0 & 1 & 0 & 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & 1 \\ 1 & -3 & 0 & 1 & 0 & 2 & 0 }[/mm]

Hallo,

ich kenne mich mit Ver- und Entschlüsseln überhaupt nicht aus, und schon gar nicht, wenn es um Matrizen geht.

Aber mein Hausfrauenverstand sagt mir, daß man das nicht "einfach so" entschlüsseln kann: brauchte man da nicht den Code oder so? Was ist das Ziel?

Ich glaube, Du mußt das genauer erklären - oder ins richtige Forum verschieben lassen.

Gruß v. Angela

Bezug
                
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 Fr 27.03.2009
Autor: imbroken603

Danke @angela...ich glaube das hilft mir etwas weiter.


Bezug
        
Bezug
Matrix entschlüsseln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 Fr 27.03.2009
Autor: angela.h.b.


> Entschlüsseln Sie folgende Matrix:
>  A = [mm]\pmat{ 0 & 2 & 0 & 4 & 2 & 2 & 0 \\ 0 & 1 & 0 & 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & 1 \\ 1 & -3 & 0 & 1 & 0 & 2 & 0 }[/mm]

Hallo,

wenn ich das, was Du sagst und den von mir geposteten Luftballon-Link deute, geht es also um folgendes:

Du hast da oben die erweiterte Koeffizientenmatrix eines linearen, inhomogenen Gleichungssystems, und Du sollst dieses lösen, indem Du die Matrix zunächst mit dem Gaußalgorithmus auf reduzierte Zeilenstufenform bringst.

Ich habe in dem kleinen Text die Begriffe verwendet, die üblicherweise in diesem Zusammenhang auftauchen, und zu denen Du viel nachlesen kannst in Büchern, im Internet und auch hier im Forum.

Am besten versuchst Du jetzt mal erneut Dein Glück und postest später eventuelle Rückfragen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]