matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix einer liearen Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Matrix einer liearen Abbildung
Matrix einer liearen Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix einer liearen Abbildung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:40 Fr 06.01.2006
Autor: heine789

Aufgabe
Gegeben sei die Abbildung f: R² -> R² definiert durch
[mm] f(a_{1}, a_{2}) [/mm] := [mm] (a_{1} [/mm] + [mm] 2a_{2}, 2a_{1} [/mm] - [mm] a_{2}) [/mm]
und die Basen
[mm] B_{1} [/mm] = [mm] \{ \vektor{1 \\ 0}, \vektor{0 \\ 1} \}, [/mm]
[mm] B_{2} [/mm] = [mm] \{ \vektor{-1 \\ 2}, \vektor{2 \\ 0} \} [/mm] des R².

Ermitteln Sie die Darstellungsmatrizen von f bzgl. der Basen

b1) [mm] B_{1}, B_{2} [/mm]
b2) [mm] B_{2}, B_{1} [/mm]
b3) [mm] B_{2}, B_{2} [/mm]

Hallo. Ich bins schon wieder.
Kann mir jemand sagen, ob mein Rechenweg für b1) so stimmt?

f( [mm] \pmat{ 1 & 0 \\ 0 & 1 }, \pmat{ -1 & 2 \\ 2 & 0 } [/mm] )
= ( [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] +  [mm] 2\pmat{ -1 & 2 \\ 2 & 0 }, 2\pmat{ 1 & 0 \\ 0 & 1 } [/mm] - [mm] \pmat{ -1 & 2 \\ 2 & 0 } [/mm] )
= ( [mm] \pmat{ -1 & 4 \\ 4 & 1 }, \pmat{ 3 & -2 \\ -2 & 2 } [/mm] )

Hab also einfach die Basen in f eingefügt.

???

MfG heine



        
Bezug
Matrix einer liearen Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Fr 06.01.2006
Autor: Julius

Hallo heine!

> Gegeben sei die Abbildung f: R² -> R² definiert durch
>  [mm]f(a_{1}, a_{2})[/mm] := [mm](a_{1}[/mm] + [mm]2a_{2}, 2a_{1}[/mm] - [mm]a_{2})[/mm]
>  und die Basen
>  [mm]B_{1}[/mm] = [mm]\{ \vektor{1 \\ 0}, \vektor{0 \\ 1} \},[/mm]
>  [mm]B_{2}[/mm] =
> [mm]\{ \vektor{-1 \\ 2}, \vektor{2 \\ 0} \}[/mm] des R².
>  
> Ermitteln Sie die Darstellungsmatrizen von f bzgl. der
> Basen
>  
> b1) [mm]B_{1}, B_{2}[/mm]
>  b2) [mm]B_{2}, B_{1}[/mm]
>  b3) [mm]B_{2}, B_{2}[/mm]
>  
> Hallo. Ich bins schon wieder.
>  Kann mir jemand sagen, ob mein Rechenweg für b1) so
> stimmt?
>  
> f( [mm]\pmat{ 1 & 0 \\ 0 & 1 }, \pmat{ -1 & 2 \\ 2 & 0 }[/mm] )
>  = ( [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm] +  [mm]2\pmat{ -1 & 2 \\ 2 & 0 }, 2\pmat{ 1 & 0 \\ 0 & 1 }[/mm]
> - [mm]\pmat{ -1 & 2 \\ 2 & 0 }[/mm] )
>  = ( [mm]\pmat{ -1 & 4 \\ 4 & 1 }, \pmat{ 3 & -2 \\ -2 & 2 }[/mm] )
>  
> Hab also einfach die Basen in f eingefügt.
>  
> ???

Was machst du da? [verwirrt]

Du musst

$f(1,0)$ und $f(0,1)$ berechnen und die entstehenden Vektoren bezüglich der Basis [mm] $B_2$ [/mm] darstellen.

Liebe Grüße
Julius

Bezug
                
Bezug
Matrix einer liearen Abbildung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:02 Fr 06.01.2006
Autor: heine789

Also für b1) dann so

f(1,0) = (1,2)

[mm] \vektor{1 \\ 2} [/mm] = [mm] \vektor{-x \\ 2y} [/mm] + [mm] \vektor{2x \\ 0} [/mm] = [mm] \vektor{x \\ 2y} [/mm]

-> x = 1, y = 1

f(0,1) = (2,-1)

[mm] \vektor{2 \\ -1} [/mm] = [mm] \vektor{-x \\ 2y} [/mm] + [mm] \vektor{2x \\ 0} [/mm] = [mm] \vektor{x \\ 2y} [/mm]

-> x = 2, y = -1/2

A = [mm] \pmat{ 1 & 2 \\ 1 & -\bruch{1}{2}} [/mm]

Kann man hier auch sowas wie eine Probe machen?

Gruß heine

Bezug
                        
Bezug
Matrix einer liearen Abbildung: falsch
Status: (Antwort) fertig Status 
Datum: 18:27 Fr 06.01.2006
Autor: leduart

Hallo heine
> Also für b1) dann so
>  
> f(1,0) = (1,2)
>  
> [mm]\vektor{1 \\ 2}[/mm] = [mm]\vektor{-x \\ 2y}[/mm] + [mm]\vektor{2x \\ 0}[/mm] =
> [mm]\vektor{x \\ 2y}[/mm]

wie kommst du auf die Gleichung?  
du suchst doch x,y die Koordinaten in der Basis B2 also:
[mm]\vektor{1 \\ 2}[/mm] = [mm]x*\vektor{-1 \\ 2}[/mm] + [mm]y*\vektor{2 \\ 0}[/mm] =

> -> x = 1, y = 1

hier ist das Ergebnis zufällig richtig!  

> f(0,1) = (2,-1)
>  
> [mm]\vektor{2 \\ -1}[/mm] = [mm]\vektor{-x \\ 2y}[/mm] + [mm]\vektor{2x \\ 0}[/mm] =
> [mm]\vektor{x \\ 2y}[/mm]

aber hier: [mm]\vektor{2 \\ -1}[/mm] = [mm]x*\vektor{-1 \\ 2}[/mm] + [mm]y*\vektor{2 \\ 0}[/mm]

> -> x = 2, y = -1/2

Anderes Ergebnis.!  

> A = [mm]\pmat{ 1 & 2 \\ 1 & -\bruch{1}{2}}[/mm]

Falsch

> Kann man hier auch sowas wie eine Probe machen?

ja. nimm irgend nen Vektor v=(x1,x2)  in der Basis B1 bilde ihn mit f ab, schreibe ihn als Linearkombination der 2 Basisvektoren B2.also [mm] f(v)=y1*b_{21}+y2*b_{22} [/mm]
dann muss gelten: [mm] A*\vektor{x1 \\ x2}=\vektor{y1 \\ y2} [/mm]
Gruß leduart

Bezug
                                
Bezug
Matrix einer liearen Abbildung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:44 Sa 07.01.2006
Autor: heine789

Danke für dein Hinweis!
Da hab ich mal wieder was verbrochen...

MfG heine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]