matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix bez. Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrix bez. Basis
Matrix bez. Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix bez. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 15.03.2012
Autor: unibasel

Aufgabe
Es sei V ein Vektorraum über einen Körper K mit Basis [mm] (v_{1},...,v_{n}). [/mm] Weiter seien [mm] a_{1},...,a_{n-1} [/mm] beliebige Elemente von K. Die Vorgaben

[mm] \phi(v_{i})=\begin{cases} v_{i+1}, & \mbox{für } i legen einen Endomorphismus [mm] \phi [/mm] von V fest.
a) Man bestimme die Matrix von [mm] \phi [/mm] bezüglich der gegebenen Basis.
b) Man bestimme das charakteristische Polynom von [mm] \phi. [/mm]

Nun also ich nehme mal an, ich muss die Vorgabe als Vorschrift benutzen, um auf meine Matrix zu kommen.

Leider weiss ich nicht genau, wie ich dies machen muss.

Teilaufgabe b denke ich kann ich dann lösen, indem ich das charakteristische Polynom mit Hilfe der Formel [mm] det(t*E_{n}-A) [/mm] verwende (mit A ist die Matrix von [mm] \phi [/mm] bez. der gegebenen Basis gemeint)
Das sollte dann eigentlich nicht mehr ein Problem sein.

Nur fehlt mir eben die Matrix dazu, da ich nicht genau weiss, wie diese bilden.
Was steht denn in den Zeilen und was in den Spalten?

Danke für die Hilfe im Voraus.
mfg :)

        
Bezug
Matrix bez. Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Do 15.03.2012
Autor: korbinian

Hallo,
Dein Text ist (fast) nicht lesbar.
Bitte nachbessern!
Gruß korbinian

Bezug
        
Bezug
Matrix bez. Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 15.03.2012
Autor: korbinian


> Es sei V ein Vektorraum über einen Körper K mit Basis
> [mm](v_{1},...,v_{n}).[/mm] Weiter seien [mm]a_{1},...,a_{n-1}[/mm] beliebige
> Elemente von K. Die Vorgaben
>
> [mm]\phi(v_{i})=\begin{cases} v_{i+1}, & \mbox{für } i
>  
> legen einen Endomorphismus [mm]\phi[/mm] von V fest.
>  a) Man bestimme die Matrix von [mm]\phi[/mm] bezüglich der
> gegebenen Basis.
>  b) Man bestimme das charakteristische Polynom von [mm]\phi.[/mm]
>  Nun also ich nehme mal an, ich muss die Vorgabe als
> Vorschrift benutzen, um auf meine Matrix zu kommen.

>

Richtig!
Diese Vorgabe gibt Dir die Bilder der Basisvektoren als Linearkombination der Basisvektoren. Sie ist für die ersten n-1 so einfach, dass Du sie vielleicht nicht sofort als "Linearkombination" erkennst.
Wie Du daraus die Matrix erstellst findest Du sicher in Deinem Skript. Etwa "Die Koordinatenvektoren der Bilder der Basisvektoren sind...."
Ich hoffe damit kommst Du weiter

Gruß korbinian




Bezug
                
Bezug
Matrix bez. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 15.03.2012
Autor: unibasel

Nun dann sollte dies folgendermassen aussehen?

[mm] A=\pmat{ a_{1}v_{1} & 0 & ... & ... & 0 \\ v_{1} & a_{2}v_{2} & 0 & ... & 0 \\ v_{?} & v_{?} & a_{3}v_{3} & 0 & 0 \\ ... & ... & & & a_{n}v_{n}} [/mm]

Hmm bin ein wenig verwirrt...

für i=n, das heisst in der Diagonale.
Und für i<n wäre das in der unteren Hälfte der Matrix?

Wie sieht diese dann genau aus? Danke vielmals für die Hilfe :)  

Bezug
                        
Bezug
Matrix bez. Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Do 15.03.2012
Autor: korbinian


> Nun dann sollte dies folgendermassen aussehen?
>  
> [mm]A=\pmat{ a_{1}v_{1} & 0 & ... & ... & 0 \\ v_{1} & a_{2}v_{2} & 0 & ... & 0 \\ v_{?} & v_{?} & a_{3}v_{3} & 0 & 0 \\ ... & ... & & & a_{n}v_{n}}[/mm]
>  

Leider nicht.
In der Matrix dürfen nur Elemente aus dem Körper stehen; nicht die Vektoren.
In die Spalten der Matrix müssen die Koordinaten der Bilder der Basisvektoren; das sind die Koeffizienten der Linearkombination. Also bei den ersten n-1 Spalten nur eine 1 sonst 0.Kommst Du nun klar?
Gruß korbinian

Bezug
                                
Bezug
Matrix bez. Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Do 15.03.2012
Autor: unibasel

ah so ja sorry :)
jetzt habe ichs verstanden! Vielen Dank :) mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]