matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix/Vektorbeweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Matrix/Vektorbeweise
Matrix/Vektorbeweise < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix/Vektorbeweise: Frage(n)/Tipp(s)
Status: (Frage) überfällig Status 
Datum: 02:54 So 14.12.2008
Autor: Rubstudent88

Aufgabe
Seien [mm] v_{1},...v_{n} [/mm] eine Basis für einen K-Vektorraum V und es sei [mm] A=(a_{ij})_{1 \le i \le m,1 \le j \le n} \varepsilon [/mm] M (m x n, K). Wir betrachten für 1 [mm] \le [/mm] i [mm] \le [/mm] m  die Vektoren:

[mm] w_{i}:=\summe_{j=1}^{n}a_{ij}v{j} [/mm]

a) Zeigen Sie, dass gilt: dim [mm] (span(w_{1},...w_{m}))= [/mm] Rang(A)
b) Geben Sie ein Verfahren zur Bestimmung einer Basis von [mm] span(w_{1},...w_{m}) [/mm] an.

Guten Abend liebes matheforum.net Forum,

ich hänge bei meinem Übungsblatt an zwei Aufgaben fest (diese und eine weitere die ich hier im Forum gepostet habe) und brauche eure Hilfe. Unser Übungsgruppenleiter hat uns schonmal vorgewarnt, dass diese beiden Aufgaben es in sich haben :).
Und ich häng irgendwie total auf dem Schlauch, was vielleicht auch an der Uhrzeit liegen könnte.

Zu Aufgabe a:

dim [mm] (span(w_{1},...w_{m})), [/mm] d.h. es gibt eine Basis für [mm] span(w_{1},...w_{m}). [/mm]
span [mm] (w_{1},...w_{m}), [/mm] es gibt also ein Unterraum mit [mm] \lambda_{1},...\lambda_{n} \varepsilon [/mm] K und [mm] w_{1},...w_{m} \varepsilon [/mm] K). Und weiter? Ist dies ein richtiger Ansatz oder muss man hier anders vorgehen.
Und wie kommt ich dann zum Rang, der mir ja die Anzahl der Nichtnullzeilen angibt. Oder ist es einfacher anderherum vorzugehen?

Zu b) Muss ich einfach das Verfahren nennen oder auch durchführen? Eine Basis besteht ja aus linear unabhängigen Vektoren und es muss ein Erzeugendensystem geben. Bei einer Matrix hätte ich jetzt gesagt, einfach die Matrix in ZSF bringen. Aber hier habe ich keine Schimmer, obwohl span mir doch hier was entscheidenes sagen sollte, oder?

Deswegen würde ich gerne wissen, ob ihr mir helfen könnt und mir entscheidene Tipps zum weiteren Vorgehen geben könntet. Welche Vorüberlegungen habe ich vergessen, was wäre ein möglicher Ansatz?
Wäre um jede Hilfe dankbar.

Gute Nacht wünscht euch ein neues Mitglied hier im Forum :).

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrix/Vektorbeweise: Ergänzung: Definition Rang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 So 14.12.2008
Autor: Rubstudent88

Unsere genaue Definition für Rang lautet:

Sei A [mm] \varepsilon [/mm] M (m x n, K). Dann heißen dim(ZR(A)) bzw. dim(SR(A)) der Zeilenrang bzw. Spaltenrang von A.

ZR(A):=span [mm] (z_{1},...,z_{m}) [/mm]
SR(A):=span [mm] (s_{1},...,s_{n}) [/mm]

Also zu a) wär es bei einer allgemeinen Matrix einfach Definitionen einsetzen, aber habe ich es mit Vektoren zu tun. Deswegen bin ich nicht wirklich weiter als heute morgen. Wäre schön, wenn mir hier jemand ein paar Hilfestellungen geben könnte

Bezug
                
Bezug
Matrix/Vektorbeweise: 2.Ergänzung zu Definition Rang
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:02 So 14.12.2008
Autor: Rubstudent88

Für A $ [mm] \varepsilon [/mm] $ M (m x n, K) definieren wir den Rang durch

Rang (A):= Spaltenrang(A)(= Zeilenrang(A)).

Bei beiden Teilaufgaben bin ich immernoch nicht wirklich weiter.

Kann ich irgendwie zeigen, dass dim [mm] (span(w_{1},...w_{m})) [/mm] dem Zeilen-oder Spaltenrang entspricht? Wenn ja wie? Oder muss ich hier doch wie anfangs mit Basen und Unterräumen argumentieren?

Bezug
        
Bezug
Matrix/Vektorbeweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 17.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]