matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMatrix / Kommutativität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Matrix / Kommutativität
Matrix / Kommutativität < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix / Kommutativität: Verständnis
Status: (Frage) beantwortet Status 
Datum: 14:53 Do 05.04.2012
Autor: Lu-

Aufgabe
Ich habe eine Frage: Zwei n [mm] \times [/mm] n Matrix sind kommutativ wenn beide Diagonalmatrizen sind und bei der einen Matrix, die Diagonalelemente paarweise verschieden sind.

Wieso ist dieser Zusatz, dass die Diagonalelemente paarweise verschieden sind von Bedeutung?
Habt ihr eine Bsp für mich, dass wenn zwei Diagonalelemente gleich sind die Matrizen nicht kommutativ sind?


Danke,lg

        
Bezug
Matrix / Kommutativität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Do 05.04.2012
Autor: Marcel

Hallo,

> Ich habe eine Frage: Zwei n [mm]\times[/mm] n Matrix sind kommutativ
> wenn beide Diagonalmatrizen sind und bei der einen Matrix,
> die Diagonalelemente paarweise verschieden sind.
>  
> Wieso ist dieser Zusatz, dass die Diagonalelemente
> paarweise verschieden sind von Bedeutung?
>  Habt ihr eine Bsp für mich, dass wenn zwei
> Diagonalelemente gleich sind die Matrizen nicht kommutativ
> sind?
>  Danke,lg

solange es sich um Matrizen mit etwa Einträgen aus einem Körper [mm] $K\,$ [/mm] handelt, sehe ich den Zusatz als überflüssig an:
Falls die Matrizen [mm] $S:=(s_{i,j})_{i,j=1}^n$ [/mm] und [mm] $T:=(t_{i,j})_{i,j=1}^n$ [/mm] mit [mm] $s_{i,j}=t_{i,j}=0=0_K$ [/mm] für alle $i [mm] \not=j$ [/mm] sind (formal könnte man das andeuten per [mm] $S=(\delta_{i,j}\cdot s_{i,j})_{i,j=1}^n$ [/mm] und [mm] $T=(\delta_{i,j}\cdot t_{i,j})_{i,j=1}^n$), [/mm] so folgt doch
$$S [mm] \cdot T=(\delta_{i,j}\cdot s_{i,j} \cdot t_{i,j})_{i,j=1}^n\,,$$ [/mm]
wobei [mm] $\delta_{i,j}$ [/mm] das Kronecker-Delta ist: Also [mm] $=1\,$ [/mm] genau für [mm] $i=j\,,$ [/mm] andernfalls [mm] $=0\,.$ [/mm]
Also ist die $n [mm] \times [/mm] n$-Matrix $S [mm] \cdot [/mm] T$ auch eine Diagonalmatrix mit Diagonaleintrag [mm] $s_{i,i}\cdot t_{i,i}$ [/mm] in der [mm] $i\,$-ten [/mm] Zeile und [mm] $i\,$-ten [/mm] Spalte.
Analog ist die $n [mm] \times [/mm] n$-Matrix $T [mm] \cdot [/mm] S$ eine Diagonalmatrix, wo in der [mm] $i\,$-ten [/mm] Zeile und [mm] $i\,$-ten [/mm] Spalte der Eintrag [mm] $t_{i,i}\cdot s_{i,i}$ [/mm] steht. Da in einem Körper [mm] $K\,$ [/mm] die Multiplikation kommtativ ist, sind die Einträge jeweils gleich und damit folgt $S [mm] \cdot [/mm] T=T [mm] \cdot S\,.$ [/mm]

Sollen denn die Matrizen auch Einträge aus einem Körper haben (falls noch nicht bekannt: [mm] $\IQ,\IR,\IC$ [/mm] sind alles Körper)?

Gruß,
Marcel

Bezug
                
Bezug
Matrix / Kommutativität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Do 05.04.2012
Autor: Lu-

Das war mir schon klar, entschuldige, ich hab die Frage nicht ganz verständlich formuliert.

Wenn die Diagonalmatrix A aus Einträgen z.B aus dem Körper [mm] \IQ [/mm] besteht und die Diagonalmatrix B aus Einträgen z.B aus dem Körper [mm] \IC [/mm] besteht. Und die die Diagonaleinträge in B nicht paarweise verschieden sind.

Dann müsste doch folge AB [mm] \not= [/mm] BA
Aber ich finde nur Beispiele in der die Kummutativität gilt.

Also ich suche ein konkretes Bsp mit Zahlen, das aussagt AB [mm] \not= [/mm] BA wenn die Diagonaleinträge in B nicht paarweise verschieden sind

Bezug
                        
Bezug
Matrix / Kommutativität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 05.04.2012
Autor: Marcel

Hallo,

> Das war mir schon klar, entschuldige, ich hab die Frage
> nicht ganz verständlich formuliert.
>  
> Wenn die Diagonalmatrix A aus Einträgen z.B aus dem
> Körper [mm]\IQ[/mm] besteht und die Diagonalmatrix B aus Einträgen
> z.B aus dem Körper [mm]\IC[/mm] besteht.

die Unterscheidung der Körper je Matrix ist irgendwie nicht wirklich sinnvoll, die Matrizen sollten Einträge des selben Körpers haben (schließlich berechnen wir die Matrixeinträge durch Berechnungen im Körper) - hier ist es aber eh egal:
[mm] $\IQ$ [/mm] ist in [mm] $\IC$ [/mm] eingebettet. Wir können also komplett in [mm] $\IC$ [/mm] rechnen (was wir dann auch sinnvollerweise tun sollten).

> Und die die
> Diagonaleinträge in B nicht paarweise verschieden sind.
>  
> Dann müsste doch folge AB [mm]\not=[/mm] BA
>  Aber ich finde nur Beispiele in der die Kummutativität
> gilt.
>  
> Also ich suche ein konkretes Bsp mit Zahlen, das aussagt AB
> [mm]\not=[/mm] BA wenn die Diagonaleinträge in B nicht paarweise
> verschieden sind

Für mich macht die Aufgabenstellung so, wie Du sie beschreibst, keinen Sinn. Schließlich ist ja für
[mm] $$A=(a_{i,j})_{\substack{i=1,...,m\\j=1,...,n}}\,,$$ [/mm]
[mm] $$B=(b_{j,k})_{\substack{j=1,...,n\\k=1,...,p}}$$ [/mm]
das Produkt $P:=A [mm] \cdot [/mm] B$ per Definitionem gegeben als
$$P=A [mm] \cdot B:=(\sum_{k=1}^n a_{i,k}b_{k,j})_{\substack{i=1,...,m\\j=1,...,p}}\,.$$ [/mm]
Bei der Berechnung des Eintrags
[mm] $$p_{i,j}=\sum_{k=1}^n a_{i,k}b_{k,j}$$ [/mm]
muss daher das Produkt [mm] $a_{i,k}b_{k,j}$ [/mm] definiert sein, so wie auch die Summe über solche Produkte. Das geht etwa, wenn alle [mm] $a_{i,j}$ [/mm] und [mm] $b_{i,j}$ [/mm] im selben Körper vorliegen (und weil [mm] $\IQ$ [/mm] in [mm] $\IR$ [/mm] und [mm] $\IR$ [/mm] in [mm] $\IC$ [/mm] eingebettet ist, würde man, wenn die erste Matrix Einträge nur aus [mm] $\IQ$ [/mm] und die zweite etwa Einträge nur aus [mm] $\IR$ [/mm] hätte, dann direkt mit Einträgen aus [mm] $\IR$ [/mm] rechnen - natürlich kann man hier auch zum "größten Oberkörper" [mm] $\IC$ [/mm] vorspringen, selbst, wenn man nur Matrizen mit Einträgen in [mm] $\IQ$ [/mm] hat - wir wollen ja nur ein Matrixprodukt berechnen, und nicht etwa Basen aufstellen).

Bist Du Dir also sicher, dass wir nur von Diagonalmatrizen hier reden? Oder geht es um Dreiecksmatrizen (obere, untere) oder Produkt zwischen Diagonal und Dreiecksmatrix oder oder oder?

Denn nach wie vor: Die Frage hier hat genau die gleiche Antwort wie die Frage zuvor!

Gruß,
Marcel

Bezug
                                
Bezug
Matrix / Kommutativität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 05.04.2012
Autor: Lu-

Hallo,
Ich stell einfach mal die aufgabe hinein, vlt hab ich die falsch verstanden:

Aufgabe:
Sei D eine (n [mm] \times [/mm] n) - Diagonalmatrix mit paarweise verschiedenen Diagonaleinträgem und A eine weitere n [mm] \times [/mm] n Matrix. Zeige AD=DA genau dann gilt, wenn A eine Diagonalmatrix ist.
Zeige anhand eines Beispiels, dass die Voraussetzung an die Diagonaleinträge voN D wirklich notwendig sind.

Den ersten teil hab ich gelöst nun fehlt mir das Bsp im letzten Satz.

Bezug
                                        
Bezug
Matrix / Kommutativität: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Do 05.04.2012
Autor: Marcel

Hallo,

> Hallo,
>  Ich stell einfach mal die aufgabe hinein, vlt hab ich die
> falsch verstanden:
>  
> Aufgabe:
>  Sei D eine (n [mm]\times[/mm] n) - Diagonalmatrix mit paarweise
> verschiedenen Diagonaleinträgem und A eine weitere n
> [mm]\times[/mm] n Matrix.

>

> Zeige AD=DA genau dann gilt, wenn A eine
> Diagonalmatrix ist.

d.h., es waren zwei Sachen zu zeigen: Aus [mm] $AD=DA\,$ [/mm] folgt notwendig, dass [mm] $A\,$ [/mm] Diagonalform hat, und es war zu zeigen, dass die Diagonalform von [mm] $A\,$ [/mm] hinreichend dafür ist, dass [mm] $AD=DA\,$ [/mm] gilt. Letztgenanntes ist doch - wie schon von mir geschrieben - eine Banalität.

>  Zeige anhand eines Beispiels, dass die Voraussetzung an
> die Diagonaleinträge voN D wirklich notwendig sind.
>  
> Den ersten teil hab ich gelöst nun fehlt mir das Bsp im
> letzten Satz.

Soweit ich die Aufgabe verstehe, sollst Du folgendes machen: Nimm' irgendeine Diagonalmatrix [mm] $D\,$ [/mm] mit nicht paarweise verschiedenen Einträgen, etwa [mm] $D=\text{diag}(1,1,3)\in \IR^{3 \times 3}\,.$ [/mm]
Und nun versuche, eine Matrix [mm] $A\,,$ [/mm] die eben NICHT Diagonalform hat, so zu finden, dass $A*D=D*A$ gilt. Denn das zeigt:
Wenn [mm] $D\,$ [/mm] eine Matrix in Diagonalform ist mit nicht paarweise verschiedenen Diagonaleinträgen, so folgt aus [mm] $AD=DA\,$ [/mm] NICHT NOTWENDIGERWEISE, dass [mm] $A\,$ [/mm] Diagonalform hat.

Das ist auch die einzig mögliche Interpretation: Denn bei dieser "genau dann, wenn"-Aussage gilt die Richtung [mm] $\Leftarrow$ [/mm] IMMER!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]