matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesMatrix A als Produkt A=QR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - Matrix A als Produkt A=QR
Matrix A als Produkt A=QR < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix A als Produkt A=QR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:42 Di 12.06.2007
Autor: Nicole20

Sei A eine reelle m [mm] \times [/mm] n-Matrix mit linear unabhängigen Spalten. Zeigen sie, dass A als Produkt A=QR dargestellt werden kann, wobei

a) Q eine m [mm] \times [/mm] n-Matrix ist, deren Spalten eine orthonormierte Basis des Spaltenraums sind und
b) R aus [mm] GL(n,\IR) [/mm] eine obere Dreiecksmatrix ist, dh. [mm] r_{ij}=0 [/mm] für i>j

Kann mir bitte jemand beim Lösen dieser Aufgabe helfen? Leider weiß ich nicht so recht womit ich anfangen soll.
Vielen Lieben Dank schonmal!

        
Bezug
Matrix A als Produkt A=QR: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mi 13.06.2007
Autor: Somebody


> Sei A eine reelle m [mm]\times[/mm] n-Matrix mit linear unabhängigen
> Spalten.

Also ist [mm]m\geq n[/mm]

> Zeigen sie, dass A als Produkt A=QR dargestellt
> werden kann, wobei
>  
> a) Q eine m [mm]\times[/mm] n-Matrix ist, deren Spalten eine
> orthonormierte Basis des Spaltenraums sind und
>  b) R aus [mm]GL(n,\IR)[/mm] eine obere Dreiecksmatrix ist, dh.
> [mm]r_{ij}=0[/mm] für i>j
>  
> Kann mir bitte jemand beim Lösen dieser Aufgabe helfen?

Da die Spaltenvektoren [mm]a_{\ast,j}[/mm] (wobei [mm]j=1,\ldots, n[/mm]) linear unabhängig sind, sind die von den ersten [mm]k[/mm] Spaltenvektoren aufgespannten Unterräume [mm]U_k := [a_{\ast,1},\ldots,a_{\ast,k}][/mm] von der Dimension [mm]\dim(U_k)=k[/mm] und es ist [mm]U_i \subseteq U_k[/mm] für alle [mm]i\leq k[/mm]. Daher lässt sich also (durch Orthogonalisierung) eine orthonormierte Basis dieser Unterräume [mm]U_k[/mm] finden, deren erste [mm]k[/mm] Vektoren gerade [mm]U_k[/mm] aufspannen.
Diese Basis ist auch eine Basis des Spaltenraumes von [mm]A[/mm], den der ist ja gleich [mm]U_n[/mm]. Seien also die Vektoren dieser orthonormierten Basis des Spaltenraumes die Spalten von [mm]Q[/mm].
Die Aufgabe, die nun die obere Dreiecksmatrix [mm]R[/mm] zu leisten hat, damit [mm]A=QR[/mm] gilt, ist doch nur, den [mm]k[/mm]-ten Spaltenvektor [mm]a_{\ast,k}[/mm] von [mm]A[/mm] als Linearkombination der ersten [mm]k[/mm] Spaltenvektoren von [mm]Q[/mm] darzustellen: dies ist aber, aufgrund unserer Wahl der Matrix [mm]Q[/mm], immer möglich, denn es ist ja [mm]a_{\ast,k}\in U_k[/mm].


> Leider weiß ich nicht so recht womit ich anfangen soll.

"'Begin at the beginning,' the King said gravely, 'and go on till you come to the end: then stop.'"
(Alice in Wonderland: []http://www.the-office.com/bedtime-story/classics-alice-12.htm)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]