matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Matrix
Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Fr 01.01.2010
Autor: Ayame

Aufgabe
Es sei V der [mm] \IR-Vektorraum [/mm] aller reellen 2x2 Matrizem. Ferner sei [mm] B:=\pmat{ 1 & 2 \\ 3 & 6 } [/mm]
Die lineare Abbildung f: V --> V sei definiert durch f(A) = A* B

(i) Geben sie die zu f gehörige Matrix an bezüglich der Basis
B* [mm] :=(\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }) [/mm]

(ii) Bestimmen sie die dimension des kerns von f und des bildes von f

(iii) berechnen sie die koordinaten von f(B) bzgl. B*

Hallo

Leider komm ich da gar nicht weiter.
Wir haben schon mal eine matrix vorbekommen und sollten dann die dim und die basis vom kern bestimmen aber wie ich durch eine basis auf eine matrix kommen soll... ich weiß da leider nicht weiter

könnte mir das vllt jemanden erklären ?


        
Bezug
Matrix: Teilaufgabe (i)
Status: (Antwort) fertig Status 
Datum: 20:23 Fr 01.01.2010
Autor: nooschi

zu (i)

allgemein bestimmt man die Matrix bzgl. einer Basis immer so:

deine Basis sei [mm] b_{1}, [/mm] ..., [mm] b_{n} [/mm]
dann berechnest du [mm] f(b_{i}) [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] n
diese Ergebnisse musst du durch eine Linearkombination aus deiner Basis darstellen. die einzelnen Faktoren sind dann die i-ten Spalteneinträge in der Matrix.

also jetzt konkret zu deinem Beispiel:
[mm] f(\pmat{ 1 & 0 \\ 0 & 0 }) [/mm] = [mm] \pmat{ 1 & 2 \\ 0 & 0 } [/mm] = [mm] 1\pmat{ 1 & 0 \\ 0 & 0 }+2\pmat{ 0 & 1 \\ 0 & 0 }+0\pmat{ 0 & 0 \\ 1 & 0 }+0\pmat{ 0 & 0 \\ 0 & 1 } [/mm]
[mm] f(\pmat{ 0 & 1 \\ 0 & 0 }) [/mm] = [mm] \pmat{ 3 & 6 \\ 0 & 0 } [/mm] = [mm] 3\pmat{ 1 & 0 \\ 0 & 0 }+6\pmat{ 0 & 1 \\ 0 & 0 }+0\pmat{ 0 & 0 \\ 1 & 0 }+0\pmat{ 0 & 0 \\ 0 & 1 } [/mm]
[mm] f(\pmat{ 0 & 0 \\ 1 & 0 }) [/mm] = [mm] \pmat{ 0 & 0 \\ 1 & 2 } [/mm] = [mm] 0\pmat{ 1 & 0 \\ 0 & 0 }+0\pmat{ 0 & 1 \\ 0 & 0 }+1\pmat{ 0 & 0 \\ 1 & 0 }+2\pmat{ 0 & 0 \\ 0 & 1 } [/mm]
[mm] f(\pmat{ 0 & 0 \\ 0 & 1 }) [/mm] = [mm] \pmat{ 0 & 0 \\ 3 & 6 } [/mm] = [mm] 0\pmat{ 1 & 0 \\ 0 & 0 }+0\pmat{ 0 & 1 \\ 0 & 0 }+3\pmat{ 0 & 0 \\ 1 & 0 }+6\pmat{ 0 & 0 \\ 0 & 1 } [/mm]

Lösung: [mm] \pmat{ 1 & 3 & 0 & 0 \\ 2 & 6 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 6 } [/mm]

Bemerkung: damit du jetzt die Matrix auch für Berechnungen gebrauchen kannst, musst du deine Basisvektoren als die Einheitsvektoren anschauen, d.h. [mm] \pmat{ 1 & 0 \\ 0 & 0 }=\vektor{1 \\ 0 \\ 0 \\ 0} [/mm] etc.




Bezug
                
Bezug
Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Sa 02.01.2010
Autor: Ayame

Hallo

Ich komm nicht ganzt drauf wie du die koordinaten des bildraumes hier berechnet hast .

>  [mm]f(\pmat{ 1 & 0 \\ 0 & 0 })[/mm] = [mm]\pmat{ 1 & 2 \\ 0 & 0 }[/mm]

Ich denk mir schon dass es mit f(A)= A * B mit B [mm] =\pmat{ 1 & 2 \\ 3 & 6 } [/mm] geht aber wie ?



Bezug
                        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Sa 02.01.2010
Autor: nooschi

ganz normale Matrixmultiplikation:

[mm] f(\pmat{ 1 & 0 \\ 0 & 0 }) [/mm] = [mm] \pmat{ 1 & 0 \\ 0 & 0 }*\pmat{ 1 & 2 \\ 3 & 6 } [/mm] = [mm] \pmat{ (1*1+0*3) & (1*2+0*6) \\ (0*1+0*3) & (0*2+0*6) } [/mm] = [mm] \pmat{ 1 & 2 \\ 0 & 0 } [/mm]

etc.

Bezug
                                
Bezug
Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Sa 02.01.2010
Autor: Ayame

ah stimmt
ich hab das schema bei mir etwas durcheinander bekommen.Danke!

ich muss ja als nächstes die dimension des kerns und des bildes von f berechnen.

Da nehme ich doch die matrix und forme um.

[mm] \pmat{ 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0& 1 & 3 \\ 0& 0& 0 &0 } [/mm]

am Ende habe ich nur 2 zeilen die lin unabhängig sind also ist der Rang = 2 und die dimKern = 2. oder ?

Bezug
                                        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Sa 02.01.2010
Autor: nooschi

erscheint mir richtig, ja.

Bezug
                                                
Bezug
Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 02.01.2010
Autor: Ayame

Ich hätt noch mal eine frage zur letzten aufgabe:

Berechne die koordinaten von f(B) bzgl B*

muss ich f(B) = B * B*  ausrechnen oder so :  

            1300
            2600
            1300
            2600
-----------------------
1236  |  5 15 15 45

Aber ich glaub so haben wir nur die kordinaten neu berechnet nach einem  basis wechsel´.

Bezug
                                                        
Bezug
Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 So 03.01.2010
Autor: KrabbyPatty

Das muss so aussehen, ich denke, jetzt ist es richtig:

[mm] \pmat{ 1 & 3 & 0 & 0 \\ 2 & 6 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 6 } [/mm] * [mm] \vektor{1 \\ 2 \\ 3 \\ 6} [/mm] = [mm] \vektor{7 \\ 14 \\ 21 \\ 42}.[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]