matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Matrix
Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Nilpotente
Status: (Frage) beantwortet Status 
Datum: 17:00 So 09.01.2005
Autor: ThomasK

Hi

Ich hab hier eine Aufgabe:
A [mm] \in [/mm] M(n;K) sei eine untere Dreiecksmatrix, deren Hauptdiagonale nur aus Nullen besteht.
Zeigen Sie, das A Nilpotent ist.

Kurs gefasst also:
z.b. A =
[mm] \vmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 } [/mm]

A² ist dann:

[mm] \vmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 } [/mm]

und [mm] A^3 [/mm] ist die Nullmatrix und damit Nilpotent.

Reicht das wenn die Frage lautet, wir sollen es zeigen das A Nilptent ist?

        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 So 09.01.2005
Autor: DaMenge

Hi Thomas,

du hast das Prinzip verstanden, aber du musst es allgemein beweisen, d.h. nicht per einem Beipspiel.

Da würde sich z.B. vollständige Induktion anbieten - du nimmst eine allgemeine Matrix $ A=( [mm] a_{ij} [/mm] ) $ mit $ [mm] a_{ij}=0 [/mm] $ für $ [mm] i\ge [/mm] j $
Induktionsanfang : A² verliert eine Nebendiagonale
im Induktionsschritt musst du nun zeigen: $ [mm] rang(A^{i+1}) [/mm] < [mm] rang(A^i) [/mm] $
dabei kannst du davon ausgehen, dass sowohl $ [mm] A^i [/mm] $ als auch A echte untere Dreiecksmatrizen sind...

Du musst wohl alles ziemlich allgemein machen - viel Indezies und viel Schreiberei, aber im Grunde weißt du ja, was passiert.

Vielleicht gibt es noch einen schöneren Weg...
mal abwarten.

viele Grüße
DaMenge

Bezug
        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 So 09.01.2005
Autor: Guerk

Hallo,

eine andere Möglichkeit wäre diese:
Betrachte die Matrix als Endomorphismus bezüglich einer beliebigen Basis [mm] v_{1},v_{2},\dots,v_{n} [/mm] eines n-dimensionalen K-Vektorraums V.
Dann definiert [mm] V_i:=Kv_1+Kv_2+\dots+Kv_i [/mm] für [mm] i=0,\dots,n [/mm] eine Fahne [mm] 0=V_0\subset V_1\subset V_2\subset\dots\subset V_n [/mm] mit [mm] f(V_i)\subseteq V_{i-1} [/mm] für alle [mm] i=1,\dots, [/mm] n. Also gilt auch [mm] f^i(V)\subseteq V_{n-i},i=1,\dots,n [/mm] und insbesondere [mm] f^n(v)=0. [/mm] Dann hat [mm] f^n [/mm] aber bezüglich der gewählten Basis die Nullmatrix als darstellende Matrix.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]