matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Matrix
Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 12.07.2004
Autor: studentin

Hallo alle! hier ist wieder eine Aufgabe bei der ich nicht weiter komme!

Stelle die lineare Abb. l : IR²-->IR³ aus Aufgabe 1  nicht bzgl. der kannonischen Basen, sondern bzgl. B = {(1,1), (-1,1)} und C = {(0,1,1), (1,0,1), (1,1,0)} als Matrix dar Vergleiche die Ergebnisse.

PS. Die A.1 lautete: Sei l : IR²-->IR³ linear mit l (1,2) = (1,2,3) und l (2,1)=(3,2,1). Bestimme eine reelle 3*2 - Matrix A mit l=lA.  rausgekriegt habe ich: A = [mm] \begin{pmatrix} 5/3 & -1/3 \\ 2/3 & 2/3 \\ -1/3 & 5/3 \end{pmatrix} [/mm]

Wer kann mir bei der Aufgabe helfen?

Ich habe diese Frage in keinem weiteren Forum gestellt.




        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Di 13.07.2004
Autor: Paulus

Hallo Kati

> Hallo alle! hier ist wieder eine Aufgabe bei der ich nicht
> weiter komme!
>  
> Stelle die lineare Abb. l : IR²-->IR³ aus Aufgabe 1  nicht
> bzgl. der kannonischen Basen, sondern bzgl. B = {(1,1),
> (-1,1)} und C = {(0,1,1), (1,0,1), (1,1,0)} als Matrix dar
> Vergleiche die Ergebnisse.
>  
> PS. Die A.1 lautete: Sei l : IR²-->IR³ linear mit l (1,2) =
> (1,2,3) und l (2,1)=(3,2,1). Bestimme eine reelle 3*2 -
> Matrix A mit l=lA.  rausgekriegt habe ich: A =
> [mm]\begin{pmatrix} 5/3 & -1/3 \\ 2/3 & 2/3 \\ -1/3 & 5/3 \end{pmatrix}[/mm]
>

[ok] Das habe ich auch erhalten.

Ich nehme an, dass ihr in der Vorlesung oder im Skript die folgende Beziehung hergeleitet habt:

Sei $T$ die Transformationsmatrix für eine Basistransformation in $V$ und
sei $S$ die Transformationsmatrix für eine Basistransformation in $W$

Ferner sei $A$ die Matrix für eine lineare Abbildung von $V$ in $W$ bezüglich der Basen in $V$ und $W$, während $B$ die Matrix der gleichen Abbildung bezüglich der neuen Basen sei. Dann gilt die Beziehung:
$B$ = [mm] $S^{-1}AT$ [/mm]

Kannst du bitte mal die Matrizen $T$, $S$ und wenn möglich [mm] $S^{-1}$ [/mm] eruieren? Falls du Schwierigkeiten damit hast helfe ich dir natürlich gerne dabei! (Tipp: die Koordiunaten der neuen Basisvektoren stehen als Kolonnen in der jeweiligen Transformationsmatrix.)

Die Matrix $A$ hast du ja schon. Du brauchst also $B$ nur noch nach obiger Formel zu berechnen. :-)

Mit lieben Grüssen
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]