matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix...was bedeutet die 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Matrix...was bedeutet die 1
Matrix...was bedeutet die 1 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix...was bedeutet die 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Sa 17.03.2007
Autor: parvarana

Aufgabe
http://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate
Überschrift:
Lineare Modellfunktion  
Der zweidimensionale Fall  

Meine Frage...Bei der Matrixschreibeweise bei Wikipedia hat die Matrix A eine 1 in der ersten Spalte stehen...Was bedeutet diese? kann man die nicht einfach weglassen oder fällt dann irgendwas wichtiges raus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke schon mal im vorraus....   ;)

        
Bezug
Matrix...was bedeutet die 1: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 17.03.2007
Autor: Riley

Hi parvarana,

nein, natürlich kannst du die 1en nicht einfach weglassen, überleg doch mal was rauskommt, dann könntest du A doch gar nicht mehr mit dem Vektor x multiplizieren!
Das ist ja gerade ein Bsp für die Regressionsgerade, also gesucht ist die Gerade g(x) = a + bx, die von gegebenen Punkten [mm] (x_i,y_i) [/mm] (i=1,...,m) minimalen Abstand  [mm] \summe_{i=1}^{m} (g(x_i)-y_i)^2 [/mm] hat.

einsetzen gibt:  
[mm] \summe_{i=1}^{m} [/mm] ((a + b [mm] x_i) -y_i)^2 [/mm] = [mm] \| \pmat{ 1 & x_1 \\ ... & ... \\ ...& .... \\ 1&x_m } \pmat{ a \\ b } [/mm] - [mm] \vektor{y_1\\... \\...\\ y_m} \|_2^2 [/mm] -> min

wenn du jetzt Ax ausmultilplizierst, dann siehst du wofür du die 1en in der matrix brauchst.

viele grüße
riley



Bezug
                
Bezug
Matrix...was bedeutet die 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 17.03.2007
Autor: parvarana

achja, stimmt, und dann würden wichtige Teile fehlen....oder?


Bezug
                        
Bezug
Matrix...was bedeutet die 1: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Sa 17.03.2007
Autor: Riley


vielleicht hilft dir das:

[mm] \| \pmat{ 1 & x_1 \\ ... & ... \\ ...& .... \\ 1&x_m } \pmat{ a \\ b } [/mm] - [mm] \vektor{y_1\\... \\...\\ y_m} \|_2^2 [/mm] = (1*a+ [mm] x_1* [/mm] b - [mm] y_1)^2 [/mm] +  (1*a+ [mm] x_2* [/mm] b - [mm] y_2)^2 [/mm] + ....+  [mm] (1*a+x_m [/mm] * b- [mm] y_m)^2 [/mm]

die 1er in der Matrix entstehen durch die koeffizienten von a.
jetzt klarer?

viele grüße
riley

Bezug
                                
Bezug
Matrix...was bedeutet die 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Sa 17.03.2007
Autor: parvarana

Danke..genauso hat ichs mir auch ausgerechnet...jetzt ists mir klarer.

:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]