matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrix-Faktorisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrix-Faktorisierung
Matrix-Faktorisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix-Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Do 06.09.2007
Autor: pusteblume86

Hallo ihr,

ich habe folgendes kleines Problem bei der Faktorisierung einer Matrix.

Es geht darum jede Matrix A [mm] \in M_{m,n}(\IR) [/mm] eine Faktorisierung hat: A=PT, wobei [mm] P\in M_{m,n}(\IR), T\in M_{,n}(\IR). [/mm]
T obere Dreiecksmatrix mit positiven Einträgen
Spalten von P sind Orthonomalsystem

Nun  habe ich folgende Matrix [mm] A:=\pmat{ 3 & 2 \\ 1 & 2 } [/mm]

1.Schritt: Orthonormalisierung der Spalten:

Hier haben wir nach Anwendung des orthonormaliserungsverfahen von Gramschmidt [mm] b_1= \vektor{3/(\wurzel{10}) \\ 1/(\wurzel{10})} [/mm]
                     [mm] b_2=\vektor{-1/(\wurzel{10}) \\ 3/(\wurzel{10})} [/mm]

Diese bilden nun die Spalten von P: [mm] \pmat{ 3/(\wurzel{10}) & -1/(\wurzel{10}) \\ 1/(\wurzel{10}) & 3/(\wurzel{10}) } [/mm]

T berechnet sich nun daraus, dass zwischen den Vektoren und den orthonomalisierten Vektoren folgende Beziehung steht:

[mm] u_j [/mm] = [mm] \summe_{k=1}^{j}t_{kj}b_k [/mm]

Also [mm] \vektor{3 \\ 1} =t_{11}*\vektor{3/(\wurzel{10}) \\ 1/(\wurzel{10})}=> t_{11} [/mm] = [mm] \wurzel{10} [/mm]
[mm] \vektor{2 \\ 2} [/mm] = [mm] t_{12}*\vektor{3/(\wurzel{10}) \\ 1/(\wurzel{10})}+ [/mm]
[mm] t_{22}*\vektor{-1/(\wurzel{10}) \\ 3/(\wurzel{10})} [/mm]

Und da habe ich nun herausbekommen: [mm] t_{12}= 5/12*\wurzel{40}, t_{22}= [/mm] 1/4*wurzel{40}

[mm] (t_{kj})= [/mm] T  [mm] t_{21}=0 [/mm]

[mm] \pmat{\wurzel{10} & 5/12*\wurzel{40} \\ 0 & 1/4*wurzel{40} }=T [/mm]

beim zusammenrechnen kommt dann aber leider was falsches raus an manchen Einträgen von A. Kan das vielleicht jemand nachrechnen und den Fehler finen?
Oder mir sagen was ich falsch gemacht habe`??

Lg Sandra

        
Bezug
Matrix-Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Do 06.09.2007
Autor: rainerS

Hallo Sandra!

>  [mm]\vektor{2 \\ 2}=t_{12}*\vektor{3/(\wurzel{10}) \\ 1/(\wurzel{10})}+t_{22}*\vektor{-1/(\wurzel{10}) \\ 3/(\wurzel{10})}[/mm]
> Und da habe ich nun herausbekommen: [mm]t_{12}= 5/12*\wurzel{40}[/mm], [mm]t_{22}= 1/4*\wurzel{40} [/mm]


Da hast du dich verrechnet. [mm]t_{12} = \bruch{8}{\sqrt{10}}[/mm], [mm]t_{22} = \bruch{4}{\sqrt{10}}[/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Matrix-Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Do 06.09.2007
Autor: pusteblume86

Danke schön!!

Jetzt wäre noch die Frage: WArum existiert für jede Matrix eine solche Faktorisierung?

Bezug
                        
Bezug
Matrix-Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Do 06.09.2007
Autor: nick_twisp

Hallo,

hast du schon mal was von dem "Gaußschen Eliminationsverfahren" oder "Gauß-Algorithmus" gehört? (war nur ne rethorische Frage, natürlich hast du).

Was du da machst, ist ja im Prinzip nichts anders als lauter invertierbare Elementarmatrizen (Darstellungsmatrizen von Automorphismen) an deine Ausgangsmatrix $A$ zu multiplizieren. Diese Elementarmatrizen addieren z.B. das [mm] $\lambda$-fache [/mm] der i.ten Zeile zur j.ten Zeile hinzu, oder multiplizieren die i.te Zeile mit [mm] $\lambda$. [/mm] Nach Ausführen dieses Algorithmus erhälst du z.B. immer eine obere Dreiecksmatrix. Das Produkt dieser Einheitsmatrizen ist also das Inverse deiner Nichtdreiecks-Matrix.
Zumindest ist dies ein intuitive Sichtweise, wieso die Dreieckszerlegung immer funktioniert.

Viele Grüße,
Nick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]