matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenMathetest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Mathetest
Mathetest < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mathetest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 01.04.2010
Autor: Anju

Aufgabe
Mathetest

Aufgabe 1:

Drei Gerade sind wie folgt gegeben:

g1 geht durch die Punkte A (-3/1,5) und B (6/-3)
g2 hat die Steigung m = -3 und geht durch B
g3 steht senkrecht auf g2 und geht durch D (-3/4)

Zeichnen Sie die Gerade in ein rechtwinkliges Koordinatensystem (1LE = 1cm).

Bestimmen Sie rechnerisch die Gleichungen der Geraden g1, g2 und g3.

Berechnen Sie den spitzen Winkel, den die Gerade g1 und g2 einschließen.


Aufgabe 2:

Gegeben sind die Geraden und Punkte aus Aufgabe 1.

a) Die Gerade g2 und g3 schneiden sich in C.
    
Berechnen Sie den Abstand des Punktes C von der Geraden g1.

  Berechnen Sie die länge von AB sowie den Flächeninhalt des Vierecks ABCD.

  In welchem Verhältnis wird diese Fläche durch die Gerade AC geteilt ?


b) Detr Punkt E wandert auf der Geraden g4: x = -3.

Bei welchen Koordinaten von E (ye>4) ist der Flächeninhalt des Dreiecks ACE doppelt so groß wie derjenige des Dreiecks ACD ?

Wie groß ist der Flächeninhalt des Dreiecks ACF,wenn F der Schnittpunkt von g2 und g4 ist?


  Vorgegebene Formeln:

y = mx+b
d = P1P2 = (x2-x1)hoch 2 +(y2-y1)hoch2 (alles in Wurzel)
y = m(x-x1) + y1
m = y2-y1(bruchstrich)x2-x1      m = tangenz alpha
m2 = -1(bruchstrich) m1  ( wenn geraden senkrecht zueinanderstehen)

Hilfe, ich muss diesen Mathetest über die Ferien schreiben.
Das Problem ist das ich das Überhaupt nicht verstehe.
Ich wäre echt sehr dankbar wenn mir jemand dabei helfen würde oder mir sagt wie ich das rechnen muss. VIELEN DANK im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Den Anfang von Aufgabe 1 verstehe ich, aber was ist ein 1LE?
und wie wende ich die Formel für die Gleichung der Geraden an. (welche Überhaupt?) Ab hier verstehe ich nichts mehr! (Berechnung des spitzen Winkels ect.)
Wo kommt Punkt C her ? und und und ...

Wäre über Lösungen sehr dankbar! :-)




        
Bezug
Mathetest: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 01.04.2010
Autor: M.Rex

Hallo und [willkommenmr]

> Mathetest
>  
> Aufgabe 1:
>  
> Drei Gerade sind wie folgt gegeben:
>  
> g1 geht durch die Punkte A (-3/1,5) und B (6/-3)
>  g2 hat die Steigung m = -3 und geht durch B
>  g3 steht senkrecht auf g2 und geht durch D (-3/4)
>  
> Zeichnen Sie die Gerade in ein rechtwinkliges
> Koordinatensystem (1LE = 1cm).
>  
> Bestimmen Sie rechnerisch die Gleichungen der Geraden g1,
> g2 und g3.
>  
> Berechnen Sie den spitzen Winkel, den die Gerade g1 und g2
> einschließen.
>  
>
> Aufgabe 2:
>  
> Gegeben sind die Geraden und Punkte aus Aufgabe 1.
>  
> a) Die Gerade g2 und g3 schneiden sich in C.
>      
> Berechnen Sie den Abstand des Punktes C von der Geraden
> g1.
>  
> Berechnen Sie die länge von AB sowie den Flächeninhalt
> des Vierecks ABCD.
>  
> In welchem Verhältnis wird diese Fläche durch die Gerade
> AC geteilt ?
>  
>
> b) Detr Punkt E wandert auf der Geraden g4: x = -3.
>  
> Bei welchen Koordinaten von E (ye>4) ist der Flächeninhalt
> des Dreiecks ACE doppelt so groß wie derjenige des
> Dreiecks ACD ?
>  
> Wie groß ist der Flächeninhalt des Dreiecks ACF,wenn F
> der Schnittpunkt von g2 und g4 ist?
>  
>
> Vorgegebene Formeln:
>  
> y = mx+b
>  d = P1P2 = (x2-x1)hoch 2 +(y2-y1)hoch2 (alles in Wurzel)
>  y = m(x-x1) + y1
>  m = y2-y1(bruchstrich)x2-x1      m = tangenz alpha
>  m2 = -1(bruchstrich) m1  ( wenn geraden senkrecht
> zueinanderstehen)
>  
> Hilfe, ich muss diesen Mathetest über die Ferien
> schreiben.
>  Das Problem ist das ich das Überhaupt nicht verstehe.
>  Ich wäre echt sehr dankbar wenn mir jemand dabei helfen
> würde oder mir sagt wie ich das rechnen muss. VIELEN DANK
> im Voraus.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Den Anfang von Aufgabe 1 verstehe ich, aber was ist ein
> 1LE?

LE ist die Abkürzung für LängenEinheit

>  und wie wende ich die Formel für die Gleichung der
> Geraden an. (welche Überhaupt?)

Bestimme doch erstmal anhabd der Angeben die Geradengleichungen, also

[mm] g_{1}(x)=m_{1}x+n_{1} [/mm]
[mm] g_{2}(x)=m_{2}x+n_{2} [/mm]
[mm] g_{3}(x)=m_{3}x+n_{3} [/mm]

> Ab hier verstehe ich
> nichts mehr! (Berechnung des spitzen Winkels ect.)
>  Wo kommt Punkt C her ? und und und ...

Der Punkt C ist der Schnittpunkt der Geraden [mm] g_{1}(x)=m_{1}x+n_{1} [/mm] und [mm] g_{2}(x)=m_{2}x+n_{2}. [/mm]
Wenn du die Skizze hast, kannst du ja mal versuchen, über Stufen und Nebenwinkel die Schnittwinkel zwischen den Geraden zu ermitteln, aus der Formel [mm] \tan(\alpha_{1})=m_{1} [/mm] kannst du ja die Schnittwinkel der Geraden mit der x-Achse ermitteln.



>  
> Wäre über Lösungen sehr dankbar! :-)
>  

Versuche erstmal, mit den Tipps nen bisschen weiterzukommen, Rückfragen kannst du ja gerne hier stellen, aber bitte dann etwas konkreter.

Marius

Bezug
                
Bezug
Mathetest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:37 Di 06.04.2010
Autor: Anju

Aufgabe
Mathetest:

Aufgabe 1:

Drei Gerade sind wie folgt gegeben:

g1 geht durch die Punkte A (-3/1,5) und B (6/-3)
g2 hat die Steigung m = -3 und geht durch B
g3 steht senkrecht auf g2 und geht durch D (-3/4)

Zeichnen Sie die Gerade in ein rechtwinkliges Koordinatensystem (1LE = 1cm).

Bestimmen Sie rechnerisch die Gleichungen der Geraden g1, g2 und g3.

Berechnen Sie den spitzen Winkel, den die Gerade g1 und g2 einschließen.


Aufgabe 2:

Gegeben sind die Geraden und Punkte aus Aufgabe 1.

a) Die Gerade g2 und g3 schneiden sich in C.
    
Berechnen Sie den Abstand des Punktes C von der Geraden g1.

  Berechnen Sie die länge von AB sowie den Flächeninhalt des Vierecks ABCD.

  In welchem Verhältnis wird diese Fläche durch die Gerade AC geteilt ?


b) Detr Punkt E wandert auf der Geraden g4: x = -3.

Bei welchen Koordinaten von E (ye>4) ist der Flächeninhalt des Dreiecks ACE doppelt so groß wie derjenige des Dreiecks ACD ?

Wie groß ist der Flächeninhalt des Dreiecks ACF,wenn F der Schnittpunkt von g2 und g4 ist?


  Vorgegebene Formeln:

y = mx+b
d = P1P2 = (x2-x1)hoch 2 +(y2-y1)hoch2 (alles in Wurzel)
y = m(x-x1) + y1
m = y2-y1(bruchstrich)x2-x1      m = tangenz alpha
m2 = -1(bruchstrich) m1  ( wenn geraden senkrecht zueinanderstehen)


Hallo Matheprofis,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe leider immer noch schwierigkeiten beim lösen des Mathetestes:

Gerade g1 habe ich jetzt eingezeichnet, doch wie zeichne ich g2 und erst g3 in das koordinatensystem ein???

Bei g2 habe ich nun y = -3 x +21 heraus bekommen, doch was nun und wie zeichne ich g2 dann ein?

Dies verstehe ich bei g3 erst gar nicht !!!

Dann habe die Geradengleichung bei g1 versucht und habe dies hier heraus  bekommen:
d = P1P2 = 10,09

Das ist bestimmt falsch, oder?

Ich habe keine Ahnung wie ich das hier Lösen soll.
Ich freue mich sehr über Lösungs Vorschläge.

Vielen Dank im Voraus !!!!


Bezug
                        
Bezug
Mathetest: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Di 06.04.2010
Autor: angela.h.b.


> Mathetest:
>  
> Aufgabe 1:
>  
> Drei Gerade sind wie folgt gegeben:
>  
> g1 geht durch die Punkte A (-3/1,5) und B (6/-3)
>  g2 hat die Steigung m = -3 und geht durch B
>  g3 steht senkrecht auf g2 und geht durch D (-3/4)
>  
> Zeichnen Sie die Gerade in ein rechtwinkliges
> Koordinatensystem (1LE = 1cm).
>  
> Bestimmen Sie rechnerisch die Gleichungen der Geraden g1,
> g2 und g3.
>  
> Berechnen Sie den spitzen Winkel, den die Gerade g1 und g2
> einschließen.
>  
>
> Aufgabe 2:
>  
> Gegeben sind die Geraden und Punkte aus Aufgabe 1.
>  
> a) Die Gerade g2 und g3 schneiden sich in C.
>      
> Berechnen Sie den Abstand des Punktes C von der Geraden
> g1.
>  
> Berechnen Sie die länge von AB sowie den Flächeninhalt
> des Vierecks ABCD.
>  
> In welchem Verhältnis wird diese Fläche durch die Gerade
> AC geteilt ?
>  
>
> b) Detr Punkt E wandert auf der Geraden g4: x = -3.
>  
> Bei welchen Koordinaten von E (ye>4) ist der Flächeninhalt
> des Dreiecks ACE doppelt so groß wie derjenige des
> Dreiecks ACD ?
>  
> Wie groß ist der Flächeninhalt des Dreiecks ACF,wenn F
> der Schnittpunkt von g2 und g4 ist?
>  
>
> Vorgegebene Formeln:
>  
> y = mx+b
>  d = P1P2 = (x2-x1)hoch 2 +(y2-y1)hoch2 (alles in Wurzel)
>  y = m(x-x1) + y1
>  m = y2-y1(bruchstrich)x2-x1      m = tangenz alpha
>  m2 = -1(bruchstrich) m1  ( wenn geraden senkrecht
> zueinanderstehen)
>  

> Gerade g1 habe ich jetzt eingezeichnet, doch wie zeichne
> ich g2 und erst g3 in das koordinatensystem ein??

Hallo,

[willkommenmr].

[mm] g_2 [/mm] hat die Steigung m = -3 und geht durch B(6|-3).

Somit ist B ein Punkt der Geraden, welchen Du schonmal einzeichnen kannst.
Weiter weißt Du, daß die Steigung -3 ist. Gehe also von B aus eine Einheit nach rechts und 3 Einheiten nach unten. Hier liegt ein weiterer Punkt Deiner Geraden, und Du kannst sie nun einzeichnen - ohne die Gleichung vorher bestimmt zu haben.

>  
> Bei g2 habe ich nun y = -3 x +21 heraus bekommen,

Das kommt mir nicht ganz richtig vor...Wie hast Du das gemacht?

>  doch was
> nun und wie zeichne ich g2 dann ein?

Mal angenommen, y=-3x+21 wäre richtig.
Die 21 ist der y-Achsenabschnitt, ein Punkt der Geraden wäre also bei (0| 21).
Den nächsten Punkt würdest Du aufgrund der Steigung [mm] -3=\bruch{-3}{1} [/mm] so bekommen, wie bereits oben beschrieben.

>  
> Dies verstehe ich bei g3 erst gar nicht !!!

Nun, zunächst sollst Du ja bloß zeichnen.
Du kannst mit dem Geodreick irgendeine Senkrechte zu [mm] g_2 [/mm] zeichen, und dann verschiebst Du sie so, daß sie durch D geht.

Für die rechnerische Lösung ist es wichtig zu wissen: Geraden, die zu einer Geraden mit der Steigung m senkrecht sind, haben die Steigung [mm] -\bruch{1}{m}. [/mm]

>  
> Dann habe die Geradengleichung bei g1 versucht

Ergebnis?

> und habe
> dies hier heraus  bekommen:
>  d = P1P2 = 10,09

Das ist näherungsweise der Abstand zwischen A und B. Wolltest Du den ausrechnen?



>  
> Das ist bestimmt falsch, oder?
>  
> Ich habe keine Ahnung wie ich das hier Lösen soll.

Was jetzt?

Gruß v. Angela

>  Ich freue mich sehr über Lösungs Vorschläge.
>  
> Vielen Dank im Voraus !!!!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]