matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Mathematik Zentral Teil4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Mathematik Zentral Teil4
Mathematik Zentral Teil4 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mathematik Zentral Teil4: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:45 Mi 23.05.2007
Autor: Mathematik2005

Würde mich freuen, wenn mir einer in einigen stichpunkten zeigen könnte, wie man auf die ergebnisse hier kommt. Ich wollte jemandem dabei helfen und hab gemerkt das ich selber ein wenig eingerostet bin :( ich hoffe mir kann hier jemand schnell helfen :S danke aba schon mal im vorraus an alle die sich die mühe machen werden!

Anhang befindet sich am Ende!

Aufgabe
Aufgabe 4

Mit einer Thermoskanne wird die Abkühlung heißer Getränke verzögert.
In einem Labor wurde bei Zimmertemperatur die Abkühlung von Wasser in verschiedenen
Thermoskannen untersucht. In den Experimenten wurde die Temperatur in Abhängigkeit von
der Zeit ermittelt.

a) Die folgende Tabelle zeigt eine solche aufgenommene Messreihe für


•Stellen Sie die Messreihe als Graph in einem Koordinatensystem dar.
Im Intervall 0 t ¡Ü ¡Ü 3 kann die Funktion mit einer Gleichung der Form
y = f(t) = a b • t beschrieben werden.

• Bestimmen Sie die Werte für a und b zur aufgenommen Messreihe.

b)
Die Abkühlung des Wassers in Thermoskanne 2 wird durch folgende Funktionsgleichung
y = f(t) = 70 • für 0 0,8t ¡Ü t ¡Ü 4 beschrieben.
Dabei ist y die Temperatur in °C und t die Zeit in Stunden.

• Berechnen Sie die Temperatur des Wassers 19 Minuten nach dem Einfüllen

• Begründen Sie, weshalb die gegebene Funktionsgleichung für größere Zeiträume

c) Nach längerem Gebrauch wird die Dichtung der Thermoskanne 2 porös. Dadurch
erfolgt die Abkühlung des Wassers schneller.

• Entscheiden Sie, welche Funktionsgleichung
(A) y = f(t) = 70 oder 0,85t •
(B) y = f(t) = 70 0,75t •
den Abkühlungsprozess unter dieser neuen Bedingung beschreibt.

• Begründen Sie Ihre Entscheidung.  



Aufgabe Hinweise Lösung Punkte
a) Grafische Darstellung
Werte a = 60, b = 0,9

b) Temperatur: 65,22 °C
Begründung: z. B. für große Zeiten, ergeben
sich Temperaturen unter der
Zimmertemperatur, dies ist praktisch
nicht möglich

c) Entscheidung + Begründung


[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Mathematik Zentral Teil4: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 23.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Mathematik Zentral Teil4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 So 24.03.2013
Autor: MatheGuru


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]