matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMaßtheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Maßtheorie
Maßtheorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maßtheorie: Maßfortsetzungen
Status: (Frage) beantwortet Status 
Datum: 17:31 Mi 27.10.2004
Autor: Jan_Z

Hallo, habe folgendes Problem und wäre froh, wenn mir jemand dabei helfen könnte:

Sei [mm] \Omega [/mm] eine Menge und A eine [mm] \sigma-Algebra [/mm] auf [mm] \Omega, A_0 [/mm] ein Mengensystem auf [mm] \Omega, [/mm] welches [mm] \alpha [/mm] [marc: hier soll wahrscheinlich A (siehe links) bzw. [mm] \mathcal{A} [/mm] stehen] erzeugt. Seien [mm] \mu [/mm] und [mm] \nu [/mm] Maße auf [mm] (\Omega, [/mm] A) und es gelte
[mm] \mu(X)=\nu(X)<\infty, \forall [/mm] X [mm] \in A_0. [/mm]
Zeige oder widerlege, dass dann gilt:
[mm] \mu(X)=\nu(X), \forall [/mm] X [mm] \in [/mm] A

Meiner Meinung nach ist dieser Satz wahrscheinlich falsch, da er bis auf die Durchschnittsstabilität von [mm] A_0 [/mm] dem Eindeutigkeitssatz für Maßfortsetzungen entspricht. Ich denke Mal, es soll hier ein Gegenbeispiel angegeben werden, bei dem der Erzeuger von A eben nicht durschnittsstabil ist, aber ich hab keine Vorstellung, wie ich ein solches Beispiel finden bzw. konstruieren kann.
Für eure Hilfe danke ich euch schonmal im voraus!



        
Bezug
Maßtheorie: Lösung
Status: (Antwort) fertig Status 
Datum: 13:02 Do 28.10.2004
Autor: Julius

Lieber Jan!

Die fehlende Durchschnittsstabilität ist gar nicht mal das Hauptproblem (aber natürlich auch ein Problem), sondern die nicht vorausgesetzte [mm] $\sigma$-Endlichkeit. [/mm]

Das von dir gewünschte

Gegenbeispiel

Es sei [mm] $\Omega \ne \emptyset$ [/mm] beliebig, und

[mm] ${\cal A}=\{\emptyset,\Omega\}$. [/mm]

Dann ist [mm] ${\cal A}_0=\{\emptyset\}$ [/mm] ein [mm] $\cap$-stabiler [/mm] Erzeuger von [mm] ${\cal A}$. [/mm]

Für die beiden Maße [mm] $\mu$ [/mm] und [mm] $\nu$ [/mm] auf [mm] ${\cal A}$, [/mm]

[mm] $\mu(\emptyset)=0=\nu(\emptyset)=\mu(\Omega) \quad [/mm] , [mm] \quad \nu(\Omega)=1$, [/mm]

gilt:

[mm] $\mu(A) [/mm] = [mm] \nu(A) [/mm] = 0< [mm] \infty$ [/mm]   für alle $A [mm] \in {\cal A}_0$, [/mm]

aber:

[mm] $\mu \not\equiv \nu$ [/mm]  auf [mm] ${\cal A}$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]