matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMassenbestimmung Fläche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Massenbestimmung Fläche
Massenbestimmung Fläche < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Massenbestimmung Fläche: Ansatzhilfe
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 03.11.2010
Autor: nomara

Aufgabe
Zwei Körper im Halbraum z >= 0 werden durch die Flaechen mit folgenden Gleichungen
begrenzt:
a)
x = 2, z = 0, z = (x -1)³-y²
b)
x = 3, y = 0, z = 0, x² = y + z .

Weiter sei die Dichtefunktion roh: R³->R definiert durch
roh(x, y, z) = xy.
Skizzieren Sie die beiden Koerper und berechnen Sie deren Massen.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:matheboard.de, mathroid.de


Ich habe schon Probleme mit dem skizzieren von z = (x -1)³-y²
Muss ich dann das volumen berechenen? Über ein dreifach oder 2fach integral? Ich habe b.) über ein 2fach integral versucht mit den grenzen 0 bis 3 und 0 bis [mm] x^2-z [/mm] und habe dann [mm] x^2-y [/mm] zweifach nach dy und dx integriert ... das volumen war [mm] 24,3-3/2z^2 [/mm]

... das ist wohl falsch (wegen dem z) oder? Wenn ich es über ein dreifach integral integrierenm muss, was sind dann meine grenzen?
Bei der Massenformel muss ich die dichte über b integrieren... brauch ich dann überhaupt das Volumen?


        
Bezug
Massenbestimmung Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Mi 03.11.2010
Autor: chrisno

Zu den Aufgaben: steht da z=0, obwohl oben schon steht, dass es um den Halbraum geht?
Beim Skizzieren ist immer nur die dritte Gleichung spannend.
Bei a) fang doch an mit x=2. Dann hast Du [mm] $z=1-y^2$. [/mm] Zeichne das hin. Nun gehst Du zu x = 1,5 ....
Bei b) machst Du es ähnlich. Zuerst y=0, dann z=0 und jeweils zeichnen. Dann such Dir weitere Werte aus.
Zur Massenberechnung musst Du zuerst herausfinden, in welchen Bereichen die Körper vorhanden sind. Die Grenzen stehen noch nicht da. Dann brauchst Du nicht das Volumen. Du integrierst zwar wie für ein Volumen, aber mit der DIchtefunktion als Faktor vor dem dx dy dz. Wenn Du nicht irgendeine Vereinfachung siehst, dann musst Du ein Dreifachintegral hinschriebn und lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]