matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMaß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maßtheorie" - Maß
Maß < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 07.05.2020
Autor: James90

Hallo!

Sei [mm] \Omega [/mm] endlich, [mm] $(F=P(\Omega),\Omega)$ [/mm] ein Maßraum und [mm] $\mu:F\to\IR, A\mapsto \sum_{x\in A}p(x)$ [/mm] mit [mm] $p:\Omega\to\IR$. [/mm]
Wann ist [mm] \mu [/mm] ein Maß?

[mm] \mu(\emptyset)=0 [/mm] ist klar.

Sei [mm] A_1,A_2,... [/mm] eine paarweise disjunkte Folge in F.

Dann gilt [mm] \mu(\bigcup_{n\in\IN}A_n)=\sum_{x\in \bigcup_{n\in\IN}A_n}p(x)=\sum_{n\in\IN}\sum_{x\in A_n}p(x)=\sum_{n\in\IN}\mu(A_n) [/mm]

Für das mittlere "=" braucht man absolute Konvergenz von [mm] \mu. [/mm] Geht es auch "minimalistischer"?

Danke und viele Grüße!

        
Bezug
Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Fr 08.05.2020
Autor: statler

Hallo!

> Sei [mm]\Omega[/mm] endlich, [mm](F=P(\Omega),\Omega)[/mm] ein Maßraum und
> [mm]\mu:F\to\IR, A\mapsto \sum_{x\in A}p(x)[/mm] mit
> [mm]p:\Omega\to\IR[/mm].
>  Wann ist [mm]\mu[/mm] ein Maß?

Wo ist dein Problem? Wenn [mm] $\Omega$ [/mm] endlich ist, ist [mm] $\mathcal{P}(\Omega)$ [/mm] auch endlich.

>  
> [mm]\mu(\emptyset)=0[/mm] ist klar.
>  
> Sei [mm]A_1, A_2,...[/mm] eine paarweise disjunkte Folge in F.

Diese Folge ist dann notgedrungen auch endlich.
Gruß
Dieter




Bezug
        
Bezug
Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Fr 08.05.2020
Autor: Gonozal_IX

Hiho,

> [mm]\mu(\emptyset)=0[/mm] ist klar.

Das gilt nach Voraussetzung und ist daher keine Einschränkung.

[mm] $\mu$ [/mm] ist ein Maß, genau dann, wenn $p [mm] \ge [/mm] 0$ gilt.
Mehr braucht es nicht.

Gruß,
Gono

Bezug
                
Bezug
Maß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:38 So 10.05.2020
Autor: James90

Hallo Gono!

> > [mm]\mu(\emptyset)=0[/mm] ist klar.
>  Das gilt nach Voraussetzung und ist daher keine
> Einschränkung.

Sorry, da habe ich mich falsch ausgedrückt. Bei meinem Versuch gehe ich die Definition eines Maß durch und schaue wo es zu Problemen kommen könnte.

> [mm]\mu[/mm] ist ein Maß, genau dann, wenn [mm]p \ge 0[/mm] gilt.
>  Mehr braucht es nicht.

Jetzt verstehe ich leider mehrere Dinge nicht.

1) Warum würde das reichen?
2) Die Funktion wird ja dann dabei eingeschränkt. Meiner Meinung nach möchte man zu den angegebene Voraussetzungen, zusätzliche Voraussetzungen bringen, sodass /mu ein Maß ist.

Ich habe hier absolute Konvergenz gefordert, weil es bei der zweiten Voraussetzung zwar um disjunkte Mengen geht, aber die Reihenfolge geändert wird und man somit absolute Konvergenz braucht.

Vielen Dank und viele Grüße!

Bezug
                        
Bezug
Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 07:12 So 10.05.2020
Autor: fred97


> Hallo Gono!
>  
> > > [mm]\mu(\emptyset)=0[/mm] ist klar.
>  >  Das gilt nach Voraussetzung und ist daher keine
> > Einschränkung.
>  
> Sorry, da habe ich mich falsch ausgedrückt. Bei meinem
> Versuch gehe ich die Definition eines Maß durch und schaue
> wo es zu Problemen kommen könnte.
>  
> > [mm]\mu[/mm] ist ein Maß, genau dann, wenn [mm]p \ge 0[/mm] gilt.
>  >  Mehr braucht es nicht.
>  
> Jetzt verstehe ich leider mehrere Dinge nicht.
>  
> 1) Warum würde das reichen?
>  2) Die Funktion wird ja dann dabei eingeschränkt. Meiner
> Meinung nach möchte man zu den angegebene Voraussetzungen,
> zusätzliche Voraussetzungen bringen, sodass /mu ein Maß
> ist.

Ja, die zusätzliche Voraussetzung lautet:  $p [mm] \ge [/mm] 0$


>  
> Ich habe hier absolute Konvergenz gefordert, weil es bei
> der zweiten Voraussetzung zwar um disjunkte Mengen geht,
> aber die Reihenfolge geändert wird und man somit absolute
> Konvergenz braucht.


Alle Reihen,  die bei Dir oben vorkommen sind endlich!  [mm] \Omega [/mm]  ist endlich!

Hast Du die Antwort von Dieter nicht gelesen?

>  
> Vielen Dank und viele Grüße!


Bezug
                        
Bezug
Maß: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 So 10.05.2020
Autor: Gonozal_IX

Hiho,

> 1) Warum würde das reichen?
>  2) Die Funktion wird ja dann dabei eingeschränkt. Meiner
> Meinung nach möchte man zu den angegebene Voraussetzungen,
> zusätzliche Voraussetzungen bringen, sodass /mu ein Maß
> ist.

Wie fred schon schrieb: Ja, diese Voraussetzung ist $p [mm] \ge [/mm] 0$, diese Voraussetzung ist notwendig und hinreichend.

D.h. es gilt: [mm] $\mu \text{ Maß } \gdw [/mm] p [mm] \ge [/mm] 0$
Zeige das!


> Ich habe hier absolute Konvergenz gefordert, weil es bei
> der zweiten Voraussetzung zwar um disjunkte Mengen geht,
> aber die Reihenfolge geändert wird und man somit absolute
> Konvergenz braucht.

Auch hier wiederhole ich freds Frage: Hast du statlers Antwort überhaupt gelesen?

Und wenn du alles bearbeitet hast noch als Fingerübung: Mit der Annahme $p [mm] \ge [/mm] 0$ kann [mm] \Omega [/mm] sogar abzählbar sein, ohne dass man eine zusätzliche Annahme benötigt. Mach dir klar, dass deine "absolute Konvergenz" bereits aus $p [mm] \ge [/mm] 0$ folgt.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]