matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMartingale
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Prozesse" - Martingale
Martingale < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingale: optional sampling
Status: (Frage) beantwortet Status 
Datum: 13:48 Mi 16.05.2012
Autor: schachuzipus

Aufgabe
Satz (optional sampling)

Sei [mm](X_n,\mathcal F_n)[/mm] ein Submartingal, [mm]T_1\le T_2\le \ldots[/mm] Stoppzeiten mit

1) [mm]X_{T_n}[/mm] integrierbar

2) [mm]\liminf\limits_{k\to\infty} E\left[1_{(T_n>k)}|X_k|\right]=0[/mm]

Dann ist [mm](X_{T_n},\mathcal F_{T_n})[/mm] ein Submartingal.



Hallo zusammen,

wir hatten [mm]F_T=\{A\in\mathcal F: A\cap\{T\le n\}\in\mathcal F_n \ \forall n\in\IN\}[/mm] als die Menge aller bis [mm]T[/mm] eingetretenen Ereignisse definiert und gesagt, dies sei eine [mm]\sigma[/mm]-Algebra.

Analog ist [mm]\mathcal F_{T_n}[/mm] wohl zu verstehen.

Aber was in aller Welt soll [mm]X_{T_n}[/mm] sein?

Im Index eine ZV ??

Dann noch wie üblich die Verständnisfrage: Was sagt mir der Satz?

Wie kann ich mir so ein "optional sampling" vorstellen (und was heißt es genau auf dt.?)

Danke wie immer!!

Gruß

schachuzipus


        
Bezug
Martingale: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 16.05.2012
Autor: Gonozal_IX

Hiho,

ich schon wieder :-)

Und mal wieder beantworten wir deine Frage stückweise:


> Aber was in aller Welt soll [mm]X_{T_n}[/mm] sein?
>  
> Im Index eine ZV ??

Jap, genau das. Schreibt man es [mm] $\Omega$-weise [/mm] hin, steht da:

[mm]X_{T_n(\omega)}(\omega)[/mm].

Klüselt man das auseinander, wird es vielleicht etwas verständlicher:

Sei [mm] $\omega \in \Omega$ [/mm]

[mm] T_n [/mm] ist eine Stoppzeit und sei [mm] $t^\* [/mm] = [mm] T_n(\omega)$ [/mm]

Dann ist:

[mm] X_{T_n(\omega)}(\omega) [/mm] = [mm] X_{t^\*}(\omega)$ [/mm]

[mm] $X_{T_n(\omega)}(\omega)$ [/mm] ist also der Wert des Prozesses zum Zeitpunkt [mm] $T_n(\omega)$ [/mm]

> Dann noch wie üblich die Verständnisfrage: Was sagt mir
> der Satz?
> Wie kann ich mir so ein "optional sampling" vorstellen (und
> was heißt es genau auf dt.?)


Schön in Worte gefasst hat das eigentlich der zugehörige []Wikipedia-Artikel  


MFG,
Gono.

Bezug
                
Bezug
Martingale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:12 Mi 16.05.2012
Autor: schachuzipus

Hey Gono,

wieder einmal vielen Dank für deine gute Antwort!

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]