matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseMartingal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "stochastische Prozesse" - Martingal
Martingal < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Martingal: Problem
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 02.01.2009
Autor: SorcererBln

Aufgabe
Zeige, dass ein nicht-negatives Martingal fast sicher $0$ bleibt, nachdem es zum ersten Mal die $0$ getroffen hat!

Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja jemand einen Tipp?

        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Fr 02.01.2009
Autor: felixf

Hallo

> Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  Ich weiß hier noch keine Lösungsstrategie. Sicherlich muss
> ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> jemand einen Tipp?

Wenn du eine Zufallsvariable $X$ hast mit $X [mm] \ge [/mm] 0$ f.s., und du $E(X) = 0$ hast, dann gilt $X = 0$ f.s.

Du weisst also [mm] $X_t [/mm] = 0$ f.s. und hast $s > t$, und willst [mm] $X_s [/mm] = 0$ f.s. zeigen; da [mm] $X_s \ge [/mm] 0$ gilt reicht es also aus, [mm] $E(X_s) [/mm] = 0$ zu zeigen.

Wie kannst du jetzt die Martingaleigenschaft vielleicht verwenden? Bedenke, dass $E(E(X [mm] \mid \mathcal{F})) [/mm] = E(X)$ ist fuer alle [mm] $\sigma$-Algebren $\mathcal{F}$ [/mm] und alle Zufallsvariablen $X$.

LG Felix


Bezug
                
Bezug
Martingal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Fr 02.01.2009
Autor: SorcererBln


> Hallo
>  
> > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  Ich weiß hier noch keine Lösungsstrategie. Sicherlich
> muss
> > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > jemand einen Tipp?
>
> Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  
> Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> zu zeigen.
>  
> Wie kannst du jetzt die Martingaleigenschaft vielleicht
> verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> Zufallsvariablen [mm]X[/mm].
>  
> LG Felix
>  

OK. Sei $n$ der erste Zeitpunkt, wo [mm] $X_n=0$ [/mm] f.s.

OK. Ich habe ja aufgrund der Martingaleigenschaft für alle [mm] $m\geq [/mm] n$

[mm] $E[X_m]=E[X_n]=0$ [/mm]           (*)

und daraus folgt also [mm] $X_m=0$ [/mm] für alle [mm] $m\geq [/mm] n$. Fertig.

Zu (*) beweis per Induktion nach m. Für $m=n$ ist die Behauptung klar. Für $m+1$ haben wir aufgrund der Martingaleigenschaft

[mm] $E[X_{m+1}|F_{m}]=X_m$, [/mm] also [mm] $E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n]$ [/mm]

nach Induktionsvoraussetzung. Also mit der Eigenschaft der bedingten Erwartung

[mm] $E[X_{m+1}]=E[X_n]$, [/mm]

was wir zeigen wollten. Bist du damit einverstanden?

Vielen Dank für deinen Tipp!






Bezug
                        
Bezug
Martingal: Antwort
Status: (Antwort) fertig Status 
Datum: 01:07 Sa 03.01.2009
Autor: felixf

Hallo

> > > Zeige, dass ein nicht-negatives Martingal fast sicher [mm]0[/mm]
> > > bleibt, nachdem es zum ersten Mal die [mm]0[/mm] getroffen hat!
>  >  >  Ich weiß hier noch keine Lösungsstrategie.
> Sicherlich
> > muss
> > > ich ein Martingalkonvergenzsatz anwenden. Vielleicht hat ja
> > > jemand einen Tipp?
> >
> > Wenn du eine Zufallsvariable [mm]X[/mm] hast mit [mm]X \ge 0[/mm] f.s., und
> > du [mm]E(X) = 0[/mm] hast, dann gilt [mm]X = 0[/mm] f.s.
>  >  
> > Du weisst also [mm]X_t = 0[/mm] f.s. und hast [mm]s > t[/mm], und willst [mm]X_s = 0[/mm]
> > f.s. zeigen; da [mm]X_s \ge 0[/mm] gilt reicht es also aus, [mm]E(X_s) = 0[/mm]
> > zu zeigen.
>  >  
> > Wie kannst du jetzt die Martingaleigenschaft vielleicht
> > verwenden? Bedenke, dass [mm]E(E(X \mid \mathcal{F})) = E(X)[/mm]
> > ist fuer alle [mm]\sigma[/mm]-Algebren [mm]\mathcal{F}[/mm] und alle
> > Zufallsvariablen [mm]X[/mm].
>  >  
> > LG Felix
>  >  
>
> OK. Sei [mm]n[/mm] der erste Zeitpunkt, wo [mm]X_n=0[/mm] f.s.
>  
> OK. Ich habe ja aufgrund der Martingaleigenschaft für alle
> [mm]m\geq n[/mm]
>  
> [mm]E[X_m]=E[X_n]=0[/mm]           (*)
>  
> und daraus folgt also [mm]X_m=0[/mm] für alle [mm]m\geq n[/mm]. Fertig.
>  
> Zu (*) beweis per Induktion nach m. Für [mm]m=n[/mm] ist die
> Behauptung klar. Für [mm]m+1[/mm] haben wir aufgrund der
> Martingaleigenschaft
>  
> [mm]E[X_{m+1}|F_{m}]=X_m[/mm], also
> [mm]E[E[X_{m+1}|F_{m}]]=E[X_m]=E[X_n][/mm]
> nach Induktionsvoraussetzung. Also mit der Eigenschaft der
> bedingten Erwartung
>  
> [mm]E[X_{m+1}]=E[X_n][/mm],
>  
> was wir zeigen wollten. Bist du damit einverstanden?

Ja, bin ich :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]